
Lightweight Verification of Array Indexing
Martin Kellogg

U. of Washington, USA
kelloggm@cs.washington.edu

Vlastimil Dort
Charles U., Czechia
dort@d3s.mff.cuni.cz

Suzanne Millstein
U. of Washington, USA

smillst@cs.washington.edu

Michael D. Ernst
U. of Washington, USA

mernst@cs.washington.edu

ABSTRACT
In languages like C, out-of-bounds array accesses lead to security
vulnerabilities and crashes. Even in managed languages like Java,
which check array bounds at run time, out-of-bounds accesses cause
exceptions that terminate the program.

We present a lightweight type system that certifies, at compile
time, that array accesses in the program are in-bounds. The type sys-
tem consists of several cooperating hierarchies of dependent types,
specialized to the domain of array bounds-checking. Programmers
write type annotations at procedure boundaries, allowing modular
verification at a cost that scales linearly with program size.

We implemented our type system for Java in a tool called the
Index Checker. We evaluated the Index Checker on over 100,000
lines of open-source code and discovered array access errors even
in well-tested, industrial projects such as Google Guava.
CCS Concepts: • Software and its engineering → Software
verification;Automated static analysis;Data types and struc-
tures;
Keywords: Pluggable type systems, Index Checker, Checker Framework

ACM Reference Format:
Martin Kellogg, Vlastimil Dort, Suzanne Millstein, and Michael D. Ernst.
2018. Lightweight Verification of Array Indexing. In Proceedings of 27th
ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA’18). ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3213846.3213849

1 INTRODUCTION
An array access a[i] is in-bounds if 0 ≤ i and i < length(a).
Unsafe array accesses are a common source of bugs. Their effects
include denial of service (via crashes or otherwise), exfiltration of
sensitive data, and code injection. They are the single most impor-
tant cause of security vulnerabilities [41]: buffer overflows enabled
the Morris Worm, SQL Slammer, Code Red, and Heartbleed, among
many others, allowing hackers to, for example, steal 4.5 million
medical records [21]. If all array accesses were guaranteed to be in-
bounds, these attacks would be impossible. A run-time system can
prevent out-of-bounds accesses, but at the cost of halting the pro-
gram, which is undesirable. Despite decades of research, preventing
out-of-bounds accesses remains an urgent, difficult, open problem.

An ideal technique for avoid out-of-bounds array accesses should
satisfy the following criteria:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5699-2/18/07. . . $15.00
https://doi.org/10.1145/3213846.3213849

• prevent the vulnerability rather than merely detecting it at
run-time and crashing the program.

• be efficient, with no time or space overhead at run time.
• be compatible with legacy code, which need not be rewritten.
• be sound: prevent all bounds errors, rather than finding some
and letting hackers and users encounter others.

• be precise: issue few false positive warnings.
• be fast: work modularly and incrementally when the program-
mer makes a change.

• be deterministic with regard to output and run time; small pro-
gram changes do not have large or non-local effects.

• be comprehensible: the user can understand why the analysis
fails or succeeds, and the output localizes the actual error.

• be effective: finds new bugs in real-world codebases.
• be usable, without disproportionate effort or code clutter.

Many academic and industrial approaches have been put for-
ward to address this important problem. These advances have made
both theoretical and practical contributions to science and engi-
neering. Dynamic bounds checking augments the program with
run-time checks, crashing the program (i.e., by throwing an excep-
tion) instead of performing illegal operations. This widely adopted
approach fails the first three criteria. Heuristic-based, compile-time
bug-finding tools are useful for finding some defects, but provide no
guarantee, failing the soundness criterion. Several types of sound
static analyses could prevent bounds errors at compile time, though
most sound tools have not been evaluated in substantive case stud-
ies. Proof assistants fail the compatibility, speed, and comprehen-
sibility criteria: they require heroic effort to use and understand,
and they require re-implementation of the program or the program-
ming language.Automated theorem provers translate the verification
problem into a satisfiability problem, then invoke a solver; they
fail at comprehensibility and either speed or determinism. Bounded
verification (model checking or exhaustive testing) is generally not
sound. Inference approaches do not require programmer annota-
tions but fail the speed, determinism, and comprehensibility criteria.
Hybrid static–dynamic approaches trade off the criteria, but sat-
isfy no more of them than their component approaches. Section 7
discusses related work in more detail and gives citations.

We propose to prove safety of bounds checks—equivalently, to
detect all possible erroneous array accesses—via a collection of type
systems. Typechecking is a nonstandard choice for this problem.
In previous attempts, types were too weak to capture the rich
arithmetic properties required to prove facts about array indexing,
could be hard to understand, and cluttered the code. One of our
contributions is to show that a carefully-designed collection of type
systems—each specialized to a simple property—is an excellent fit
to the problem.

A type system can satisfy all the criteria listed above. Typecheck-
ing happens at compile time. It can run within an existing compiler

https://doi.org/10.1145/3213846.3213849
https://doi.org/10.1145/3213846.3213849
https://doi.org/10.1145/3213846.3213849


ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Martin Kellogg, Vlastimil Dort, Suzanne Millstein, and Michael D. Ernst

and is familiar to programmers. Our type system is sound (see sec-
tion 6.1 for the usual caveats about our implementation). Every
sound analysis suffers false positives, but ours issues fewer false
positives than Java’s own type system does (table 3). Typecheck-
ing is modular and deterministic. Types systems specialized to a
simple property do not require programmers to reason about the
full complexity of dependent types. Our experiments show types
are effective for array bounds checking. We hope our success in-
spires researchers to consider types as a practical approach in other
challenging verification domains.

We have developed a set of lightweight, easy-to-understand type
systems, which we implemented in a tool called the Index Checker.
The Index Checker provides the strong guarantee that a program is
free of out-of-bounds array accesses, without the large human effort
typically required for such guarantees. The Index Checker scales to
and finds serious bugs in well-tested, industrial-size codebases. The
Index Checker’s type systems are simple enough for developers
to reason about yet rich enough to guarantee that real programs
are free of indexing errors (or to reveal subtle errors). The Index
Checker verifies that programmer-written type annotations are
consistent with the code; that is, at run time, the values have the
given type. This provides a documentation benefit: programmers
cannot forget to write documentation of necessary indexing-related
properties, the documentation is guaranteed to be correct, and the
types are both more formal and more concise than informal English
documentation.

We implemented our type systems for Java. Our work general-
izes to other languages because there is nothing about our type
systems that is specific to Java. Our implementation handles ar-
bitrary fixed-length data structures, such as arrays, strings, and
user-defined classes. In fact, it found errors in collection classes
defined in Google’s Guava library.

We evaluated our type system with three case studies on open-
source code in everyday industrial use. The case studies show
that the Index Checker scales to practical programs at reasonable
programmer effort. The Index Checker found bugs in well-tested,
widely-used code that were acknowledged and subsequently fixed
by maintainers. Most importantly, it certified that no more array
bound errors exist in checked code (modulo soundness guarantees).

The primary contributions of this paper are:
• Reducing array bounds checking to 7 kinds of reasoning.
• Modeling these kinds of reasoning as simple type systems.
• Our open-source implementation, the Index Checker, runs
on Java, scales to large programs, and is distributed with the
Checker Framework (https://checkerframework.org/).

• Case studies showing that the Index Checker finds bugs in real
programs.

• A comparison of our type-based approach to other approaches.

2 VERIFICATION VIA COOPERATING TYPE
SYSTEMS

An array access a[i] is in-bounds if two properties hold: 0 ≤ i and
i < length(a).1 Sections 2.2 and 2.3 show how to establish them,
thus proving an access safe. However, an analysis that computes

1Evaluation of a[i] could suffer other problems: a value could be undefined (e.g., unini-
tialized, deallocated memory, or null); the stack could overflow if array dereference is

Constants (§2.4)
i = 3, a.lenдth = 4

Linear inequalities
(§2.7) i < j

Negative indices (§2.8)
|i | < a.lenдth

Equal lengths (§2.6)
a.lenдth = b .lenдth

Minimum lengths (§2.5)
a.lenдth > 10

Lower bounds (§2.2)
i ≥ 0

Upper bounds (§2.3)
i < a.lenдth

Figure 1: Information flows between type systems. The type sys-
tems with two boxes ensure each array access is safe; the other type
systems support the work of these two. A dashed line indicates flow
of information from user-written annotations (see section 2.9).

only those two properties would flood the user with false positives.
One of our contributions is identifying 7 kinds of knowledge (fig. 1)
that are adequately precise in practice, and designing abstractions
(type systems) for each. Each subsequent section gives an example
of safe code that cannot be typechecked under the analyses shown
so far, and shows how we enhanced our design to accommodate
that code. These enhancements improve precision without affecting
soundness.

2.1 Background
A type is a set of run-time values: an expression’s compile-time
type is an overestimate of all its possible run-time values. Type-
checking is a dataflow analysis that produces sound estimates of
what a program may compute. Some of our types apply to integers,
like Java’s int, Integer, etc. (sections 2.2–2.4, 2.7, and 2.8). Other
types apply to fixed-length collections (sections 2.5 and 2.6). Every
variable has one or more types from each type system at every
point in a program.

Our implementation, the Index Checker, runs 7 cooperating type
systems—those that run later can use information already computed
by earlier type systems, as shown in fig. 1. Section 2.9 describes
how to use rely-guarantee reasoning to permit mutual dependence
between two type systems (the cycle in fig. 1).

The Index Checker uses some dependent types [43]. A dependent
type is a type whose definition depends on a value, such as “an
integer less than the length of array a” or “an array of length 10”.
A dependent type may mention a value or the name of a variable.

A type qualifier [23] refines a type by restricting the set of values
it represents, meaning a qualified type is a subtype of the same
unqualified type. Essentially, it is a separate type system that can
be mixed into a base type system. The Index Checker uses Java’s
type annotations to represent type qualifiers in Java source code.
For instance, in the variable declaration @Positive int i, the type is
@Positive int, which contains fewer values than int and is therefore

implemented as a procedure call; etc. Our work specifically addresses array indices
being within their bounds.

https://checkerframework.org/


Lightweight Verification of Array Indexing ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

i ≥ −1

⊤

i ≥ 0

i ≥ 1

@LowerBoundUnknown

@GTENegativeOne

@NonNegative

@Positive

Figure 2: The type system for the lower bounds of integers.
@GTENegativeOne stands for “Greater Than or Equal to Negative One”.
In each diagram in this section, arrows are subtyping relationships,
properties described by the types are on the left, and type qualifiers
in the Index Checker implemenation are on the right.

a subtype of int. Each type system is modular and runs on one
method at a time. Programmers write type qualifiers on fields and
method signatures (formal parameter and return types). The Index
Checker infers types within method bodies.

All of our type systems are flow-sensitive. For example, after a
test x.f > 0, the type of x.f is @Positive until a possible side effect
or a control flow join.

In our new type systems, there are 86 type and inference rules
beyond the standard ones. Each one is documented by a comment
in the Index Checker implementation. This paper gives a few ex-
amples, but omits most of them because they are mostly obvious
(this is a benefit of our simple type systems), and because of space
limitations.

2.2 A Type System for Lower Bounds
The first type system estimates a lower bound for each integer.
Figure 2 shows the type hierarchy. An integer whose lower bound
is less than zero may not index an array. Two rules for this type
system are e2 : @NonNegative ⊢ e1[e2] and e2 : @NonNegative ⊢ e1 » e2 :
@NonNegative.

The simplest possible type system that would permit verification
of (some) lower bounds would only include two types: non-negative
and top. Our type system for lower bounds adds two additional
types:
(1) A type for positive integers, which is useful for one-based

indices and for array accesses of the form a[i-1].
(2) A type for integers greater than or equal to -1, which is useful

for loops that decrement the loop control variable by 1 and for
indexOfmethods which return -1 on failure.

For example, consider the following code from one of our case
studies, which uses a one-indexed variable without documenting it:

/** Prints the matching item.

* @param items the items to print from

* @param itemNum specifies which item to print when there are
multiple matches */

void printItem(Object[] items, int itemNum) {
printItem(items[itemNum - 1]);

}

The Index Checker warns that itemNum - 1may be too low. The pro-
grammer should document itemNum as a 1-based index by declaring
it as @Positive int itemNum. Then, the shown code type-checks, and
the Index Checker also verifies that all clients of printItem respect
its contract (i.e., all clients only pass @Positive integers for itemNum).

⊤

.

.

.

i − 1 < a .lenдth

i < a .lenдth

i + 1 < a .lenдth

.

.

.

@UpperBoundUnknown

.

.

.

@LTLengthOf("a", "-1")

@LTLengthOf("a")

@LTLengthOf("a", "1")

.

.

.

Figure 3: The type system for the upper bound of an integer i .
@LTLengthOf stands for Less Than Length Of and has two arguments:
(1) an array a and (2) an offset x . The offset can be an arbitrary ex-
pression, such as y + 6 or z.indexOf(w).

Our type system does not support other constant lower bounds;
for example, it cannot express that i ≥ 2. This design decision is
intentional. Arbitrarily complex type systems require arbitrarily
complex reasoning. Instead, the Index Checker uses focused type
systems that are sufficiently expressive to verify array bounds in
practice.

2.3 A Type System for Upper Bounds
The index in an array access must be less than the length of the array.
Figure 3 shows a dependent type system that soundly overestimates
the relationship between all potential indices (i.e., integers) and the
length of every array in scope. (The implementation is efficient,
since it only stores types for relevant arrays.) The type rules issue
a type error when an index might exceed the bound of the array it
is accessing. An integer may have several upper bound types: for
instance, i may be less than the length of a and also less than or
equal to the length of b. An access is safe if the index has at least
one upper bound type that would permit it.

Every type in the upper bound type system also estimates an off-
set for the array. The variable plus the offset is less than the length of
the array. Programmers usually omit the offset, which defaults to 0.
The Index Checker infers offsets within method bodies, where they
are most common. Each offset is an arbitrary expression. The Index
Checker does best-effort sound reasoning. As is typical for static
analysis tools, it uses top as an estimate for non-linear arithmetic
and other constructs that are challenging for static analysis.

To see why offsets are necessary, consider the following code
from one of our case studies:

public void concat(int[] a, List<Object> b) {
int b_size = b.size();
Object[] res = new Object[a.length + b_size];
for (int i = 0; i < b_size; i++) {

res[i + a.length] = b.get(i);
}
...

}

res[i+a.length] is safe i’s type is @LTLengthOf("res.length", "a.length").
An inference rule automatically infers this type, without the need
for programmer annotations, because res.length = b_size + a.length

(which is non-negative) and i is less than b_size. The relevant type



ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Martin Kellogg, Vlastimil Dort, Suzanne Millstein, and Michael D. Ernst

a .lenдth ≥ 0

a .lenдth ≥ 1

.

.

.

@MinLen(0)

@MinLen(1)

.

.

.

Figure 4: The type system for the minimum length of an array a.
There is no top type since all arrays have zero or more elements.

Table 1: Type qualifiers for auxiliary type systems.
Section Conceptual Type Type Qualifier
§2.6 a.lenдth = b .lenдth T @SameLen("a")[] b

§2.7 i < j @LessThan("j")int i

§2.8 |i | < a.lenдth @SearchIndexFor("a")int i

rule is:
e1 : @LTLengthOf ("e4", "e3.length") e2 : @LTELengthOf ("e3")

e1 + e2 : @LTLengthOf ("e4")

A programmer can give array a the type @HasSubsequence("b",

"startIndex", "endIndex") to indicate that b is a view on a slice of a.
This permits translation between indices for a and b.

2.4 Type Systems for Constants
The Index Checker obtains facts about indices and array lengths
from an existing constant propagation and interval analysis. It
provides three type qualifiers: @IntRange(x, y) represents an inte-
ger in the range x to y inclusive; @IntVal(x) is syntactic sugar for
@IntRange(x, x); and @ArrayLen(x) indicates that an array has exactly
length x . In these type qualifiers, x and y are compile-time con-
stants.

2.5 A Type System for MinimumArray Lengths
Consider this implementation of min from one of our case studies:

/** ... @param array a non-empty array ... */
public static int min(int @MinLen(1) ... array) {
int min = array[0];
for (int i=1; i<array.length; i++) { ... } ... }

The Javadoc states that the array must be non-empty, which the
code relies on in array[0].We expressed this formally as @MinLen(1),
and the Index Checker ensures that clients respect it. Figure 4 shows
the type hierarchy.

2.6 A Type System for Equal-length Arrays
This type system partitions arrays in scope at each program point
into sets, where each element of a set has the same length. In a case
study, we expressed that xData and yData have the same length:

double getSlope(Number[] xData, Number @SameLen("xData") [] yData) {
...
for (int i = 0; i < xData.length; i++) {
sxy = sxy + yData[i].doubleValue() * xData[i].doubleValue();

}
}

The Index Checker verifies that both yData[i] and xData[i] are safe,
and it rejects calls to getSlope where the arguments are not guaran-
teed to have the same length. Programmers rarely need to write

@SameLen annotations; these annotations are inferred when two ar-
rays are created using the same argument, when array lengths are
tested against one another, etc. For example:

new T[e.length] : @SameLen ("e")

The Index Checker uses a type system to express this partitioning.
Each type represents one or more arrays with the same length as
the array to which the type belongs. Although this representation
is unusual, it permits the Index Checker to capture the partitioning
in a way that retains the benefits of the type system approach. The
transitivity of equality leads to an unusual least upper bound: if the
two types have at least one array in common, then the least upper
bound is the set of all of the arrays in either type. Otherwise, it is top.

2.7 A Type System for Simple Linear
Inequalities

Consider the following annotated code from one of our case studies:

double calculateMedian(@LessThan("end + 1") int start, int end) {
List working = new ArrayList(end - start + 1);
...

}

The ArrayList constructor argument must be non-negative. A type
rule in the lower bound type system (section 2.2) establishes that
end - start + 1 is non-negative, using the @LessThan fact.

2.8 A Type System for Negative Indices
The JDK’s binarySearchmethod returns either the index of the tar-
get, or a negative value indicating where the target would be if it
were present—that is, a negative index. The Index Checker mod-
els this contract with the type qualifier @SearchIndexFor. The type
systems described in sections 2.2 and 2.3 infer expression types
based on this information. For example, given an integer i of type
@SearchIndexFor("a") that is known to be negative, then i * -1 has
the type @LTLengthOf("a"). One case study had a bug where a method
should have returned -1, but returned the result of a binary search
call. Before we implemented this type system, the Index Checker
issued a warning at 14 calls to binarySearch, 13 of which were false
positives. After, it issued a warning only at the error.

2.9 Cyclic Type System Dependence
Each type system uses facts computed by previously-run type sys-
tems (fig. 1). Some examples include:

e1 : @MinLen (k2) ,k2 < k3 ⊢ k3 : @LTLengthOf (e1) (§2.5)

e1 : @SameLen (e2) , e3 : @LTLengthOf (e1) ⊢ e3 : @LTLengthOf (e2) (§2.6)
In some cases, two type systems could each benefit from the

other running first. Two rules that are often needed in real-world
code are:

e : @Positive ⊢ new int[e] : @MinLen(1)

e : @MinLen (k) ⊢ e.length - (k − 1) : @Positive.

If the lower-bound type system (section 2.2) runs first, then the
latter rule will never fire, because no types have @MinLen qualifiers
yet. If the minimum-length type system (section 2.5) runs first, then
the former rule will never fire.



Lightweight Verification of Array Indexing ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

Table 2: Annotations supported by the Index Checker as syntactic
sugar for multiple annotations from the type systems of section 2.

Type Qualifier Meaning
@IndexFor("a") int i 0 ≤ i < a.lenдth
@IndexOrHigh("a") int i 0 ≤ i ≤ a.lenдth
@IndexOrLow("a") int i −1 ≤ i < a.lenдth
@LengthOf("a") int i i = a.lenдth
@LTEqLengthOf("a") int i i ≤ a.lenдth

One possible solution would be to run typecheckers multiple
times until a fixed point, each time utilizing only knowledge that
had already been established. However, we want to retain the speed
of running each typechecker only once for each line of code.

Instead, the Index Checker uses rely-guarantee reasoning [31]
to implement the mutual dependency. The analysis that computes
minimum array lengths runs first, and relies on (that is, assumes
the truth of) any annotation explicitly written by the programmer.
The Index Checker guarantees that the explicit positive annotation
will be checked later by the type system in section 2.2.

This required extending the Checker Framework, which made no
distinction between user-written and inferred annotations before.

3 IMPLEMENTATION
A programmer invokes the Index Checker by running javac with the
--processor command-line option. The Index Checker produces
type errors exactly as javac does.

In addition to the type qualifiers in section 2, every type system
contains a bottom type ⊥, which is the type of null. ⊥ is needed
because the Index Checker handles all of Java’s numeric types (i.e.,
both int and Integer). Each type system also contains a qualifier
that indicates qualifier polymorphism, enabling parametric poly-
morphism independently over Java types, qualifiers, and full types.
The Index Checker has annotations that are syntactic sugar for
combinations of annotations from two type systems (table 2) to
help programmers express common invariants.

The Index Checker provides 1,238 annotations for the JDK (Java’s
standard library), which we wrote based on the JDK’s documenta-
tion. These annotations are trusted but not checked; a future case
study could verify the JDK implementation. The Index Checker’s
users can write similar annotations for other libraries.

The Index Checker is open-source and distributed with the
Checker Framework [42] (https://checkerframework.org/), an industrial-
strength, open-source tool for building Java type systems that is
used at companies such as Amazon, Google, and Uber. The frame-
work abstracts some details of the analysis implementation (e.g,
by modeling the heap), and automatically supports features such
as flow-sensitive local type inference, Java generics, and qualifier
polymorphism.

The Index Checker is implemented in 5,539 lines of code. The
Index Checker’s implementation consists of one typechecker for
each type system in section 2. This structure keeps each typechecker
relatively small and easy to understand. Each typechecker contains
a definition of the type hierarchy, type rules, and inference rules.

The type and inference rules are implemented directly, without
calling an external solver. This keeps performance fast and pre-
dictable, and can be more expressive, at the cost of an increase in
implementation size.

Table 3: A summary of the three case studies. Code size is non-
comment, non-blank lines, asmeasured by cloc [11]. “Bugs fixed” is
those fixed by the developers at the time ofwriting. “Annotatable lo-
cations” is the number of places that an annotation could bewritten
(approximately all uses of integral and array types in the program).
A “non-trivial check” of a type rule involves a type other than ⊤ or
⊥, such as array accesses, calls to procedures with annotated formal
parameters, etc. “False positive %” is the number of false positives
divided by the number of non-trivial checks.

Guava* JFreeChart Plume-lib Total
Lines of code 10,694 94,233 14,586 119,503
Annotatable locations 10,571 65,051 12,074 87,696
Annotations 547 2,936 242 3,725
Bugs detected 5 64 20 89
Bugs fixed 5 11 20 36
False positives 114 350 43 507
Non-trivial checks 3,084 12,520 1,817 17,421
False positive % 3.7% 2.8% 2.4% 2.9%
Java casts 219 2,707 223 3,151
* Guava packages base and primitives.

4 CASE STUDIES
We ran the Index Checker on three open-source Java projects (ta-
ble 3) used previously to evaluate bug-finding and verification
tools [7, 12, 25]. Our goal was either to verify that each was free of
array indexing bugs, or to find and fix all their array indexing bugs.

We first read the developer-provided documentation and re-
wrote it formally, as Index Checker annotations. Then, we ran the
Index Checker, investigated each warning it issued, and took one
of these actions: (1) Added missing annotations to an incomplete
specification and re-ran the Index Checker. (2) Fixed a bug in the
code and reported it to themaintainers. (3) Determined that the code
was correct, but the Index Checker was not sufficiently powerful
to prove it correct. We suppressed these false positive warnings.

Each case study was performed by someone who was not famil-
iar with the codebase being checked but familiar with the Index
Checker. We spent most of our time understanding subtle and/or
undocumented code and improving documentation or fixing errors.
Reading the entire codebase was not necessary.

Overall, the case studies demonstrate three results:
(1) The Index Checker scales to sizable programs.
(2) The Index Checker finds real bugs even in well-tested programs.

Every one of the bugs leads to a program crash. Of the bugs, 36
have so far been validated by maintainers. Details of the bugs
appear in sections 4.1–4.3.

(3) The Index Checker issues fewer false positives than Java’s type
system. Java programmers write casts to suppress false warn-
ings from Java’s type system. The Index Checker handles casts
soundly, issuing a warning at each annotated type downcast.
Sections 4.4 and 4.5 discuss false positives and annotation bur-
den.

4.1 Guava Case Study
Guava [26] is Google’s general-purpose core libraries for Java.
Guava is considered extremely reliable: it is used extensively in
production at Google and elsewhere, and its test suite is larger
than its code. We annotated two packages, com.google.common.base

https://checkerframework.org/


ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Martin Kellogg, Vlastimil Dort, Suzanne Millstein, and Michael D. Ernst

Table 4: Annotation density: number of annotations per line of code.
Annotations with larger denominators are rarer. @SearchIndexFor
only appears in the JDK. The annotations appear in the same order
as in section 2.

Annotation Guava JFreeChart Plume-lib Overall
@NonNegative 1 / 139 1 / 50 1 / 228 1 / 59
@GTENegativeOne 1 / 972 1 / 1193 1 / 2917 1 / 1258
@Positive 1 / 446 1 / 2005 1 / 1216 1 / 1440
@LTLengthOf 1 / 891 1 / 7249 1 / 912 1 / 2915
@HasSubsequence 1 / 972 0 0 1 / 10865
@IntRange 1 / 563 1 / 688 0 1 / 766
@IntVal 1 / 10694 1 / 13462 0 1 / 14939
@ArrayLen 1 / 5347 1 / 819 1 / 503 1 / 819
@MinLen 1 / 191 1 / 1812 1 / 972 1 / 972
@SameLen 1 / 1528 1 / 1428 1 / 858 1 / 1328
@LessThan 1 / 289 1 / 18847 1 / 2084 1 / 2439
@SearchIndexFor 0 0 0 0
@IndexFor 1 / 281 1 / 202 1 / 521 1 / 224
@IndexOrLow 1 / 167 1 / 47117 1 / 3647 1 / 1707
@IndexOrHigh 1 / 67 1 / 4712 1 / 810 1 / 604
@LTEqLengthOf 1 / 891 1 / 9423 1 / 14586 1 / 5196
@LengthOf 0 1 / 2692 0 1 / 3415
All annotations 1 / 20 1 / 32 1 / 60 1 / 32

and com.google.common.primitives. Most of the uses of fixed-length se-
quences in base are strings, either directly or through the CharSequence

interface. primitivesuses arrays and defines customfixed- andmutable-
length collections. Much of the code is duplicated for each of Java’s
eight primitive types.

We found 5 bugs in Guava, all of which were instances of the
same programming mistake. The bug involves factory methods for
immutable collections, which begin with code such as:

public static ImmutableIntArray of(int first, int... rest) {
int[] array = new int[rest.length+1];

This code uses unchecked integer addition to compute the length of
a new array. If the rest array has a length equal to Integer.MAX_VALUE,
the addition overflows, and the method attempts to allocate an array
of negative size. Guava’s maintainers classified this bug2 as prior-
ity one3 and accepted our patch4 that documents the maximum
allowed array length and checks this requirement at run time.

The Guava package primitives consists almost entirely of classes
working with or representing sequences of Java primitive types.
These classes require many annotations in their public interfaces,
accounting for the relatively large number of annotations Guava
required. For example, of the 160 total @IndexOrHigh annotations we
wrote in the Guava case study, 114 were in this package on param-
eters of methods that take a pair of indices specifying a range in
a sequence, such as:

List<Long> subList(@IndexOrHigh("this") int fromIndex,
@IndexOrHigh("this") int toIndex) { ... }

2https://github.com/google/guava/issues/3026
3The highest priority is zero, but the Guava team has never acknowledged a priority
zero bug in their public repository.
4https://github.com/google/guava/pull/3027

static final int[] LAST_DAY_OF_MONTH
= {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

public static SerialDate addMonths(int months, SerialDate base) {
int totMm = 12 * base.getYYYY() + base.getMonth() + months - 1;
int yy = totMm / 12; int mm = totMm % 12 + 1;
int lastDayOfMonth = SerialDate.lastDayOfMonth(mm, yy);
...

}
public static int lastDayOfMonth(int month, int year) {
final int result = LAST_DAY_OF_MONTH[month];
...

}

Figure 5: The Index Checker found this bug in JFreeChart. The argu-
ment to addMonthsmay be negative, making mm negative and causing
lastDayOfMonth to crash. For simplicity, the figure elides code for leap-
year accounting.

4.2 JFreeChart Case Study
JFreeChart [24] is used by Java application developers to include
graphs and charts in their programs. It uses arrays and fixed-size
structures extensively to represent data it draws onto charts.

The Index Checker found 64 bugs in JFreeChart, all of which
would lead to crashes. Of these bugs, 24 were in code and 40 were
in documentation. Of the code bugs, 14 were failures to check ar-
guments to public methods before indexing; 3 were inconsistencies
between JFreeChart’s time classes and the JDK’s calendar class; and
2 resembled the bug in fig. 5. The other 7 code bugs all had different
causes. The other 40 bugs involved undocumented assumptions
made by code. Clients could pass values permitted by the documen-
tation and cause a crash. We fixed these bugs by modifying the
documentation to reflect the actual assumptions.

The maintainers accepted our first two patches (fixing 11 bugs),
then went dormant. As of this writing, there has only been one
commit, and no fixed bugs or accepted pull requests, in over three
months. Our third patch is pending, and we will file the remainder
as our patches are accepted.

4.3 Plume-lib Case Study
Plume-lib [16] is a library of Java utility methods. Like Guava, it
is well-tested: its JUnit tests contain 2,693 lines of code and 1,136
assert statements.

We found 20 bugs, all of which were fixed by the developers.
We fixed 9 code defects. One involved a table header that was

printed even when the table itself was empty. Three were crashes
due to unchecked, externally supplied indices; we added code that
checks the user’s input and prints a user-friendly error message
rather than a stack trace. One was an access to an array that might
have zero length. One was a crash that would occur only when
duplicate arrays were passed to a method. One was a case where an
array’s length was checked, but then it was dereferenced unsafely
anyway. Two were in routines that should have accepted ragged
arrays, but used the length of the first subarray for all subarrays.

In 11 cases, methods were missing documentation about their
requirements and assumptions; without the documentation we
added, a user might have supplied illegal input and caused a crash.

4.4 Causes of False Positives
Every sound type system rejects some safe programs that never
perform an undesired operation at run time. If the programmer is

https://github.com/google/guava/issues/3026
https://github.com/google/guava/pull/3027


Lightweight Verification of Array Indexing ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

confident the code is safe (due to manual, or other, verification),
the programmer can suppress the warning. When using the Index
Checker, this is expressed using Java’s @SuppressWarnings syntax.

The Index Checker issues 507 false positive warnings in our case
study. This number may seem high, but it is less than the Java type
system. Programmers wrote 3,151 casts to suppress false positives
from the Java type system. (One could measure the percentage
of reports that are false positives, but this would be primarily a
measure of code quality rather than tool quality. For any program,
once its bugs are fixed, the percentage of reports that are false
positives is by definition 100%. All our subject programs had high
quality to begin with. The most effective way to use a typechecker
is throughout development, not after testing and deployment.)

This section now discusses the three most common reasons for
the Index Checker to issue a false positive in our case studies.

(1) The Index Checker is restricted to immutable length data
structures (see section 6.2). When code relies on interoperation be-
tweenmutable-length data structures and arrays, the Index Checker
may issue false positives. For example, consider the following
method from Plume-lib:

public <T> T[] concat(List<T> a, T[] b) {
T[] result = (T[]) new Object[a.size() + b.length];
for (int i = 0; i < a.size(); i++)

result[i] = a.get(i); // false positive
...

}

result’s length is greater than a’s size, so i must be an index for
result, but the Index Checker conservatively assumes that a’s size
might have changed before i is used to access result. Interfaces for
custom collections with implementations that are backed by either
an array or a list are also common. All interactions between arrays
and lists required 56 warning suppressions.

(2) JFreeChart commonly uses an object’s index to fetch it from
another object that, by construction, must contain it. In these cases,
JFreeChart correctly does not check for a -1 return value when
calling indexOfmethods. An example follows:

public class DefaultPolarItemRenderer {
/** The plot the renderer is assigned to. */
private PolarPlot plot;
public LegendItem getLegendItem(...) {
XYDataset dataset = plot.getDataset(plot.getIndexOf(this)); //f. pos
...

Because this is a field in plot, getIndexOf cannot return -1 here even
though its documentation indicates that it could. We suppressed 46
warnings caused by this pattern. Reasoning about an invariant like
this is beyond the capabilities of the Index Checker.

(3) JFreeChart defines custom data structures that are backed
by ragged arrays, called Datasets. Every method to access a Dataset

requires two parameters: an index into the array of "series" (that
is, other arrays), and an index into the corresponding series. For
example, the definition of getZ in the XYZDataset is:

public Number getZ(int series, int item);

The Index Checker handles most uses of Datasets correctly, but a
limitation of the Checker Framework causes 40 false positives when

a programmer casts a generic Dataset to a more specific subclass
of Dataset, like XYZDataset. The Checker Framework conservatively
assumes that this cast invalidates indexes dependent on behaviors
because the new type may not support those behaviors.

4.5 Annotation Burden and Benefit
Table 4 shows how often each Index Checker annotation needed to
be written. Verification is a difficult problem and provides strong
guarantees, so some programmer effort is expected. The annotation
burden is less than for Java generics, for 2 of the 3 subject programs;
that is, the programs contain fewer Index Checker annotations
than Java generic type arguments. The annotations are also much
smaller than the programs’ test suites; this comparison is relevant
because testing is another way to find errors, though in each of
these programs the testing missed errors.

The annotations are more concise and precise than English, so
writing them reduces the size of documentation. Since they are
typechecked, they are more reliable than English documentation,
which may be out of date. So the annotation count is less a measure
of programmer burden than a measure of documentation benefit.

5COMPARISON TO OTHER APPROACHES
Array indexing bugs are an important problem in practice, so
many tools have been built to detect them. We compared the Index
Checker to three tools, representing three different approaches to
the problem.

FindBugs is bug-finding tool widely deployed in industry that
uses heuristic-based pattern-matching and static analysis [2]. It
emphasizes its low false-positive rate and ease of use; unlike the
other tools, it does not aim to be sound. We used FindBugs v. 3.0.1
with all 9 bug patterns related to array or string indexing.

KeY [1] verifies Java Modeling Language (JML) [8, 33] specifica-
tions, which can express full functional correctness properties, us-
ing an automated theorem prover. We used KeY v. 2.6.3 with Z3 [13]
v. 4.5.1. We translated Index Checker annotations to JML, and oth-
erwise instructed KeY to verify the weakest possible contracts.

Clousot checks Code Contracts5 on .NETmethods [20]. It works
by abstract interpretation.We used the Code Contracts v. 1.9.10714.2
extension toMicrosoft Visual Studio Enterprise 2015 v. 14.0.25431.01
Update 3 with Microsoft .NET Framework v. 4.7.02556, with arith-
metic and bounds checks enabled and the SubPolyhedra [32] ab-
stract domain. We disabled contract inference to prevent Clousot
from detecting that parts of some test cases are unreachable. We
hand-translated code from Java to C# and Index Checker anno-
tations to Code Contracts. We used equivalent classes and meth-
ods from the .NET Framework in place of JDK classes if there
was a clear correspondence; otherwise, we wrote stub classes to
mimic them. For example, we translated new String(bytes, 0, pos)

to Encoding.ASCII.GetString(bytes, 0, pos).
We first tried to run each tool on the case study programs from

section 4 (section 5.1). We also ran each tool on an example of each
bug found by the Index Checker that was accepted by developers
(section 5.2). Finally, we compared Clousot to the Index Checker
using the test suites of the two tools (sections 5.3 and 5.4).

5https://docs.microsoft.com/en-us/dotnet/framework/debug-trace-profile/
code-contracts, https://www.microsoft.com/en-us/research/project/code-contracts/

https://docs.microsoft.com/en-us/dotnet/framework/debug-trace-profile/code-contracts
https://docs.microsoft.com/en-us/dotnet/framework/debug-trace-profile/code-contracts
https://www.microsoft.com/en-us/research/project/code-contracts/


ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Martin Kellogg, Vlastimil Dort, Suzanne Millstein, and Michael D. Ernst

Table 5: Effectiveness of 4 tools in finding real indexing bugs in their
default configurations.

FindBugs KeY Clousot Index Checker
True Positives 0 / 18 9 / 18 16 / 18 18 / 18
False Negatives 18 / 18 1 / 18 2 / 18 0 / 18

5.1 Case Study Programs
FindBugs neither found any bugs nor issued any false positives on
the case study programs from section 4.

KeY failed to run on all of our case study programs. KeY is a
whole-program analysis. The KeY distribution includes a tool to
generate stubs for unavailable code, but the generated stubs omitted
some JDK dependencies for each of our benchmarks. KeY also does
not support features of Java used in real-world code: generics, float-
ing point numbers, several Java 7 features, and all Java 8 features.

We did not run Clousot on the case study programs because
hand-translating each case study from Java to C# would have been
prohibitively time-consuming.

5.2 Developer-accepted Bugs
We categorized all the bugs that the Index Checker detected and
the program’s developers fixed, into 18 categories. We created a
minimized example of each, a few lines of code long. We also wrote
corrected versions of these minimized examples. We then ran all
four tools on these 36 code snippets (table 5).

Although KeY aims to be sound, its default configuration has a
false negative: it verified as correct the buggy code from Guava. By
enabling the most faithful Java integer semantics, KeY can detect the
bug. As expected, KeY rejected the other buggy test cases. However,
in 8 cases it gave the identical verification failure on the fixed
code, indicating that the verification failure had nothing to do with
the bug. In only 2 cases did KeY verify the correct code without
additional input. In 7 cases, KeY did not verify the correct code, but
gave a different verification failure than it did on the buggy code.
We found ourselves unable to interpret KeY’s output to locate the
bug, but we count these 7 cases as true positives in table 5 because
a KeY expert might be able to do so.

Clousot is effective—it detected most of the bugs. In its default
configuration, Clousot failed to detect two bugs, instead reporting
that they were correct code. One involved conversion from an array
of bytes to a string:

public static void doSession(InputStream stream, byte[] buf) {
Contract.Requires(buf != null); int pos = stream.read(buf);
string actual = Encoding.ASCII.GetString(buf, 0, pos);
...

}

The InputStream.readmethod returns -1 when the end of the file is
reached. Client code should check it before using it as an index.

The other bug is the Guava bug involving overflow shown in sec-
tion 4.1. Clousot has a command-line option for unsoundly checking
overflow, which is disabled by default and is not available from the
Visual Studio extension. With this command-line option enabled,
Clousot finds the Guava bug.

Based on the results in table 5, we dropped FindBugs and KeY
from further comparisons and focused on Clousot.

5.3 The Index Checker’s Test Suite
We ran Clousot on the Index Checker’s test suite, which is a set
of Java files containing correct and incorrect code with expected
warnings. The Index Checker passes this suite with no false positive
warnings. The tests are mainly real-world code encountered in
our case studies, not corner cases designed to highlight the Index
Checker’s particular strengths.

We translated the test suite into C#.We skipped tests that use JDK
classes without a direct equivalent in .NET, tests that use bottom
types, and tests that use polymorphic qualifiers (which cannot be
expressed by Code Contracts). We also skipped tests that check
whether particular Java features are handled correctly. The resulting
test suite consists of 163 C# files containing 4,608 lines of code.

One of the tests revealed a bug in Clousot. Clousot incorrectly
reported that the asserted condition is false, but it is always true:

int a = -1; int d = 2; int u = a / d; Contract.Assert(u >= -1);

Clousot issued 56 false positives. The most common causes for
Clousot to issue a false positive were: computing indices by division,
max, min, and bitwise-and operations (20 warnings), inferring that
arrays equal by ==have the same length (10warnings), and handling
an array that contains all values of an enum type (5 warnings).

5.4 Clousot’s Test Suite
Clousot’s test suite has similar structure to the Index Checker’s,
with C# files and expected warnings. We translated the parts of
the suite that check array accesses to Java, and the associated code
contracts to Index Checker annotations. This test suite contained
26 files with 2,633 lines of code. We did not write type qualifiers
for contracts or assertions that could not be expressed in our type
systems.

The Index Checker issued 136 warnings, of which 78 were true
positives (expected warnings) and 58 false positives. Eleven of these
warnings were because the code contracts could not be translated
into the Index Checker’s type systems. For example, the Index
Checker does not have an annotation to express that the return
value of a method is equal to the value of a field. The most common
reasons for false positives were: the Index Checker failed to refine
types of local variables after a check or in a loop (18 warnings), code
that increments an independent index variable in a loop over an
array (8 warnings), using a multiply of an index as a size of a newly
allocated array (6 warnings). Clousot’s test suite includes many
linear inequalities that are more complex than those handled by the
type system in section 2.7. This is probably because complex linear
inequalities are a strength of Clousot’s SubPolyhedra domain. The
Index Checker uses a cheaper analysis that issues few false positive
warnings on the real-world code in our case studies, suggesting
that Clousot’s test suite may be uncharacteristic of real-world code.

6 DISCUSSION
6.1 Limitations and Threats to Validity
Like any code analysis tool, the Index Checker only gives guaran-
tees for code that it checks. The guarantee excludes native code,
unchecked libraries like the JDK, and dynamically generated code.
The Checker Framework handles reflectivemethod calls soundly [4].



Lightweight Verification of Array Indexing ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

Type casts do not affect soundness: the Checker Framework issues
a warning at every annotated type downcast. The Index Checker
makes no guarantees about mutable-length data structures such
as Java Lists (see section 6.2). The Index Checker makes no guar-
antees in the presence of overflow, though its best-effort analysis
found some such errors in Guava (section 4.1).

Like any sound static analysis, the Index Checker cannot verify
all correct code and produces some false positive warnings. A pro-
grammer must apply some other type of reasoning to such code; if
the code is indeed safe, the programmer must suppress the warning.
The Index Checker trusts that when a programmer suppresses a
warning: (1) the code is safe, and (2) its annotations are correct.

Our results, while encouraging, may not generalize. The Index
Checker might suffer more false positives or be harder to use if our
subject programs are uncharacteristic. Over a dozen people have
used the Index Checker, but its usability by programmers has not
been established.

Our case studies demonstrate the Index Checker’s bug-finding
power on well-tested, deployed code. Our case studies are a worst-
case scenario for the tool’s usefulness. It would be both more useful
and easier to use the Index Checker from the inception of a project.
This would validate the program’s design and prevent bugs from
ever entering the code. We chose our case studies to be array-heavy
code; other code might not require as many annotations.

It is possible that our type system or the Index Checker imple-
mentation might contain errors. We have mitigated this danger by
having multiple authors review every type rule and every line of
code, and with a large test suite of 403 test cases and 9,904 lines of
test code.

6.2 Fixed-length vs. Mutable-length Collections
Our type systems work for fixed-length collections, whose size does
not change after the object is constructed. The Index Checker’s
annotations can be written on type declarations and uses, which
enables support both for JDK classes such as String and for user-
defined classes. This works even for classes that do not extend
Collection nor have one as a field, as long as the class’s abstraction
represents more than one item. To specify that a class contains an
array or collection field that acts as a delegate, the programmer
writes @SameLen annotations (section 2.6).

Handling mutable-length collections is interesting future work
that requires three techniques. The major part is tracking of index-
ing and lengths, which is described and implemented in this paper.
The second part is handling operations that change the size of a
data structure, such as add and remove. This is not difficult, though
it requires specifications about side effects or their absence. The
Checker Framework invalidates dataflow facts about expressions
at all possible reassignments, including non-pure method calls. The
third part is precisely tracking all aliasing, so that when a list’s
length changes, the lengths of all (and only) aliased lists are also
changed. This is challenging, but not specific to array indexing. New
implementations of alias analyses could be substituted in as the
community develops them. We do not know whether any existing
analysis would be sufficiently precise for our needs.

6.3 Types vs. Expressions
The most closely related work, Clousot, checks specifications writ-
ten as arbitrary C# expressions at statement boundaries. By con-
trast, Index Checker specifications are type qualifiers written on
type uses. These differ in expressiveness, conciseness, and solver
completeness.

Expressions are in general much more expressive than types.
However, they are not strictly so. Unlike Code Contracts, types
support polymorphism and variance. As an example, consider the
following method fragment from the JFreeChart case study:

Map<@NonNegative Integer, CategoryDataset> datasets;
List<@NonNegative Integer>
getDatasetIndices(DatasetRenderingOrder order) {
List<@NonNegative Integer> result = new ArrayList<>();
for (Map.Entry<@NonNegative Integer, CategoryDataset> entry :

datasets.entrySet()) {
if (entry.getValue() != null)
result.add(entry.getKey());

} ...
return result;

}

Clousot can use a quantifier to specify that the returned list should
have non-negative elements:

Contract.ForAll( Contract.Result <List<int>>(), j=>j>=0) .
However, Clousot cannot check that only non-negative numbers are
added to the list (because the addmethod doesn’t have a precondi-
tion requiring that the argument is non-negative), and cannot prove
this property. By contrast, the Index Checker can verify the whole
method, using the fact that the values added to the list are keys from
the dataset map which are non-negative, and similarly, wherever
this method is called, use the fact that any integer retrieved from
the list is non-negative.

Types are often more compact and easier to read. Expressing
properties in the underlying programming language is convenient
for tooling, but often verbose. Compare declaring i as @IndexFor("a")

versuswriting Contract.Requires(i >= 0 && i < a.Length). Or, consider
annotating an interface handling non-negative values:

public interface Values {
public @NonNegative int getItemCount();
public Number getValue(@NonNegative int index);

}

The corresponding Code Contracts requires defining a ghost ab-
stract class explicitly implementing the interface. The programmer
must stub out each method just to write the specifications, which
dramatically increases the size of the code: instead of modifying
a few lines by adding annotations, the interface must be copied
and then annotated. Combined with the more verbose syntax of
Code Contracts (i.e. Contract.Ensures(Contract.Result<int>()>= 0); in-
stead of @NonNegative int), the required changes to the code are al-
most an order of magnitude larger. Using the underlying language
is sometimes convenient, but can significantly clutter the code.

A significant difference is that a programmer can predict if the
Index Checker will verify a program’s correctness.When a program-
mer states an argument for why each array access in a program is
legal, if the argument are expressible in the Index Checker’s lan-
guage, then the Index Checker will verify the program is correct



ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Martin Kellogg, Vlastimil Dort, Suzanne Millstein, and Michael D. Ernst

(unless the Index Checker has a bug). By contrast, using expressions
to represent program facts allows arbitrarily complex reasoning, so
programmers cannot predict whether Clousot will succeed or fail.

Although the Index Checker’s specifications are more restric-
tive, they are effective in practice. The Index Checker’s design also
makes verification significantly faster. Though a direct comparison
is impossible (because the tools operate on different languages),
Clousot takes 222 minutes to check Boogie [3] (85664 LOC) and
timed out on 9 methods, whereas the Index Checker takes 8 minutes
to check JFreeChart (94233 LOC), on the same commodity hard-
ware. The design of a set of types that is sufficiently expressive, yet
efficient to check, is one of our contributions.

7 RELATEDWORK
The most common approach to array bound errors is dynamic
checking, which crashes the program rather than permitting an
unsafe operation. Most modern languages build this into the run-
time system, and tools such as Purify [28] and Valgrind [40] do it
for unsafe languages like C. These checks incur significant time
or space overhead, despite research on reducing their cost [6, 45].
Other research aims to integrate bounds checks into unsafe lan-
guages [9, 15, 30, 38, 39, 49, 52]. Fundamentally, the goal of these
approaches is to safely crash the program when an out-of-bounds
array access would occur at run time. By contrast, the Index Checker
imposes no run-time cost, and it prevents the program from crash-
ing due to array bounds mistakes.

The classic dynamic approach of allocating, maintaining, and
checking shadow bits can be performed statically via a dataflow
analysis [17, 18]. An early example [48] was notable in not using
the standard approach of unsound heuristics, but instead creating
an infinite chain of approximations to the general loop invariant,
using the “weakest liberal precondition”.

Bug-finders such as FindBugs [2] and Coverity [5] are easy to use
and useful in finding some errors. Unlike the Index Checker, their
heuristics are too weak to find all errors so they offer no guarantees.

Extended Static Checking [14, 22, 35], KeY [1], and Dafny [34]
translate verification conditions into the language of powerful sat-
isfiability engines or automated theorem provers, such as Z3 [13].
This is the dominant paradigm in bounds verification and in some
other types of program analysis. Unlike the Index Checker, these
tools suffer brittleness or instability: a small, meaning-preserving
change within a method implementation may change the tool’s
output from “verified” to “failed” or “timeout”, or might lead to
different diagnostics in unrelated parts of the program [29, 36].
Scalability and usability are also challenges.

Wei et al. [50] evaluated different program analyses, including
representations for integers and heap abstractions. They and we
both found that polygons are expensive and not very helpful; sim-
pler analyses can suffice.

Other researchers have applied dependent type systems to the
problem of array bounds. With Xi and Pfenning’s dependent type
system for a subset of SML [51], programmers write nearly arbitrary
arithmetic linear inequalities, a type elaboration phase propagates
them to unannotated expressions and collects a set of inequalities
for the entire program, and then a solver for linear inequalities (such
as Fourier variable elimination or the Omega Test [44]) is applied.

It was evaluated on 8 procedures, and the annotation overhead was
17% of lines or 31% of characters. Liquid types [46] use the same
type system but provide better inference, reducing the annotation
overhead by combining type inference with predicate abstraction.
The Dsolve tool found a bug in the Bitv library, then verified the
array safety of 58 of its 65 routines, requiring 65 lines of annotations
to verify 30 array access operations. No information is given about
the unverified routines. The Index Checker’s type system is more
limited but works without an external solver. It has been designed
to scale to real code with few false positives. ESPX [27] uses a
dataflow analysis to find buffer overflows in C programs. It scales
to large programs, but is unsound even on its own benchmarks.
A type system with only upper and lower bounds [47] found 16
errors in one program. It is simpler than the Index Checker, but
less general and has a higher false positive rate.

Abstract interpretation is as expressive as type systems [10],
though in practice the two approaches lead to analyses that feel
very different. Clousot or cccheck [20] has a number of similarities
to the Index Checker: it is automated, checks programmer-written
specifications, combines a set of interdependent analyses, works
modularly, and performs some inference. Section 6.3 notes that
Clousot’s abstract domains are richer than the Index Checker’s.
Clousot was inspired by the limitations of theorem provers that we
noted above.

The key challenge in designing a program analysis is selecting
sufficiently precise abstractions that are still efficient. Clousot’s
authors found that octagons and intervals were too imprecise,
buckets exacerbated non-determinism, and polyhedra were too
inefficient. They settled on disjunctions of intervals, upper bounds,
pentagons [37], linear inequalities, and SubPolyhedra [32] (a novel
abstraction that is as expressive as Polyhedra, but has more limited
inference). Clousot is non-deterministic, since it must apply a time-
out to its long-running analysis. The Clousot researchers do not
discuss case studies in which they examined Clousot’s output, nor
any bugs it revealed [19, 20, 32, 37]. Clousot issues a false positive
at over 10% of array bounds [32]. We have found our choice of
abstractions is simpler, more concise, more precise, faster, and ef-
fective in practice, and our implementation is more sound. Clousot
made great strides, and the Index Checker makes significant further
advances toward its vision.

8 CONCLUSION
The Index Checker occupies a new point in the design space of static
analysis tools for array-bounds violations. It is fast and incremental.
Unlike other scalable and simple tools, the Index Checker can find
complex bugs and is sound—it provides a proof of correctness. Its
technical approach is cooperating type systems, which are familiar
to any developer writing in a statically typed language. We hope
that this blend of the power of verification with the ease of use of a
bug-finding tool will allow more developers to avoid array bounds
violations.
Acknowledgments. Joe Santino, Wesley Cox, Grant Hughes, and Kevin Klein helped
design and implement an early version of an index-checking type system. Abhishek
Sangameswaran performed a case study with an early version of our tool. Jiasen Xu
andWerner Dietl created the Checker Framework’s interval analysis. Sam Elliott, Jared
Roesch, Martin Schäf, Sandy Kaplan, John Toman, David Tarditi, Calvin Loncaric, Pavel
Panchekha, Pavel Parízek, and the anonymous referees gave comments on this paper.
This work was partially supported by Czech Science Foundation project 17-12465S.



Lightweight Verification of Array Indexing ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

REFERENCES
[1] Wolfgang Ahrendt, Bernhard Beckert, Daniel Bruns, Richard Bubel, Christoph

Gladisch, Sarah Grebing, Reiner Hähnle, Martin Hentschel, Mihai Herda, Vladimir
Klebanov,WojciechMostowski, Christoph Scheben, Peter H. Schmitt, andMattias
Ulbrich. 2014. The KeY platform for verification and analysis of Java programs.
In VSTTE 2014: 6th Working Conference on Verified Software: Theories, Tools, Ex-
periments. Vienna, Austria, 55–71.

[2] Nathaniel Ayewah, David Hovemeyer, J. David Morgenthaler, John Penix, and
William Pugh. 2008. Using Static Analysis to Find Bugs. IEEE Software 25, 5
(2008), 22–29.

[3] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K Rustan M
Leino. 2005. Boogie: A modular reusable verifier for object-oriented programs. In
International Symposium on Formal Methods for Components and Objects. Springer,
364–387.

[4] Paulo Barros, René Just, Suzanne Millstein, Paul Vines, Werner Dietl, Marcelo
d’Amorim, and Michael D. Ernst. 2015. Static analysis of implicit control flow:
Resolving Java reflection and Android intents. In ASE 2015: Proceedings of the
30th Annual International Conference on Automated Software Engineering. Lincoln,
NE, USA, 669–679.

[5] Al Bessey, Ken Block, Benjamin Chelf, Andy Chou, Bryan Fulton, Seth Hallem,
Charles Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson R. Engler. 2010. A
few billion lines of code later: Using static analysis to find bugs in the real world.
Commun. ACM 53, 2 (2010), 66–75.

[6] Rastislav Bodík, Rajiv Gupta, and Vivek Sarkar. 2000. ABCD: Eliminating Array
Bounds Checks on Demand. In PLDI 2000: Proceedings of the ACM SIGPLAN 2000
Conference on Programming Language Design and Implementation. Vancouver,
BC, Canada, 321–333.

[7] Dan Brotherston, Werner Dietl, and Ondřej Lhoták. 2017. Granullar: gradual
nullable types for Java. In CC 2017: 26th International Conference on Compiler
Construction. Austin, TX, USA, 87–97.

[8] Lilian Burdy, Yoonsik Cheon, David Cok, Michael D. Ernst, Joe Kiniry, Gary T.
Leavens, K. Rustan M. Leino, and Erik Poll. 2005. An overview of JML tools and
applications. Software Tools for Technology Transfer 7, 3 (June 2005), 212–232.

[9] Jeremy Condit, Matthew Harren, Zachary Anderson, David Gay, and George C.
Necula. 2007. Dependent types for low-level programming. In ESOP 2007: 16th
European Symposium on Programming. Braga, Portugal, 520–535.

[10] Patrick Cousot. 1997. Types as abstract interpretations. In POPL ’97: Proceedings of
the 24th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. Paris, France, 316–331.

[11] Al Danial. Accessed June 7, 2018. cloc. http://cloc.sourceforge.net/.
[12] Oege De Moor, Damien Sereni, Mathieu Verbaere, Elnar Hajiyev, Pavel Avgusti-

nov, Torbjörn Ekman, Neil Ongkingco, and Julian Tibble. 2007. . ql: Object-
oriented queries made easy. In International Summer School on Generative and
Transformational Techniques in Software Engineering. Springer, Braga, Portugal,
78–133.

[13] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
TACAS 2008: Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). Budapest, Hungary, 337–340.

[14] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. 1998.
Extended Static Checking. SRC Research Report 159. Compaq Systems Research
Center.

[15] Archibald Samuel Elliott, Andrew Ruef, Michael Hicks, and David Tarditi. 2018.
Checked C: Making C safe by extension. In SecDev 2018: IEEE Cybersecurity
Development Conference. Cambridge, MA, USA.

[16] Michael Ernst. Accessed June 7, 2018. plume-lib. https://github.com/mernst/
plume-lib.

[17] Michael D. Ernst. 2003. Static and dynamic analysis: Synergy and duality. In
WODA 2003: Workshop on Dynamic Analysis. Portland, OR, USA, 24–27.

[18] David Evans. 1996. Static detection of dynamic memory errors. In PLDI ’96:
Proceedings of the SIGPLAN ’96 Conference on Programming Language Design and
Implementation. Philadelphia, PA, USA, 44–53.

[19] Manuel Fähndrich, Michael Barnett, and Francesco Logozzo. 2010. Embedded
contract languages. In SAC 2010: Proceedings of the 2010 ACM Symposium on
Applied Computing. Sierre, Switzerland, 2103–2110.

[20] Manuel Fähndrich and Francesco Logozzo. 2010. Static contract checking with
abstract interpretation. In International Conference on Formal Verification of Object-
Oriented Software. Paris, France, 10–30.

[21] James Finkle and Supriya Kurane. 2014. U.S. hospital breach biggest yet
to exploit Heartbleed bug: expert. https://www.reuters.com/article/
us-community-health-cybersecurity-idUSKBN0GK0H420140820.

[22] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B.
Saxe, and Raymie Stata. 2002. Extended static checking for Java. In PLDI 2002:
Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language
Design and Implementation. Berlin, Germany, 234–245.

[23] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. 2002. Flow-sensitive type
qualifiers. In PLDI 2002: Proceedings of the ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation. Berlin, Germany, 1–12.

[24] David Gilbert. Accessed June 7, 2018. JFreeChart. https://github.com/jfree/
jfreechart.

[25] Alberto Goffi, Alessandra Gorla, Andrea Mattavelli, Mauro Pezzè, and Paolo
Tonella. 2014. Search-based synthesis of equivalent method sequences. In FSE
2014: Proceedings of the ACM SIGSOFT 22nd Symposium on the Foundations of
Software Engineering. Hong Kong, 366–376.

[26] Google Inc. Accessed June 7, 2018. Google Guava. https://github.com/google/
guava.

[27] Brian Hackett, Manuvir Das, DanielWang, and Zhe Yang. 2006. Modular checking
for buffer overflows in the large. In ICSE 2006, Proceedings of the 28th International
Conference on Software Engineering. Shanghai, China, 232–241.

[28] Reed Hastings and Bob Joyce. 1992. Purify: A tool for detecting memory leaks
and access errors in C and C++ programs. In USENIX: Proceedings of the Winter
1992 USENIX Conference. San Francisco, CA, USA, 125–138.

[29] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno,
Michael L. Roberts, Srinath Setty, and Brian Zill. 2015. IronFleet: proving practical
distributed systems correct. In SOSP 2015, Proceedings of the 23rd ACM Symposium
on Operating Systems Principles. Monterey, CA, USA, 1–17.

[30] Trevor Jim, J. Greg Morrisett, Dan Grossman, Michael W. Hicks, James Cheney,
and YanlingWang. 2002. Cyclone: A safe dialect of C. In USENIX 2002: Proceedings
of the 2002 USENIX Annual Technical Conference. Monterey, CA, USA, 275–288.

[31] Cliff B. Jones. 1983. Tentative steps toward a development method for interfering
programs. ACM Transactions on Programming Languages and Systems (TOPLAS)
5, 4 (1983), 596–619.

[32] Vincent Laviron and Francesco Logozzo. 2011. SubPolyhedra: a family of nu-
merical abstract domains for the (more) scalable inference of linear inequalities.
Software Tools for Technology Transfer 13, 6 (2011), 585–601.

[33] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby, David
Cok, Peter Müller, Joseph Kiniry, Patrice Chalin, Daniel M. Zimmerman, and
Werner Dietl. 2013. JML Reference Manual.

[34] K. Rustan M. Leino. 2010. Dafny: An automatic program verifier for functional
correctness. In LPAR 2010: Proceedings of the 16th International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning. Dakar, Senegal, 348–370.

[35] K. Rustan M. Leino and Greg Nelson. 1998. An extended static checker for
Modula-3. In CC ’98: Compiler Construction: 7th International Conference. Lisbon,
Portugal, 302–305.

[36] K. Rustan M. Leino and Clément Pit-Claudel. 2016. Trigger selection strategies
to stabilize program verifiers. In CAV 2016: 28th International Conference on
Computer Aided Verification. Toronto, Canada, 361–381.

[37] Francesco Logozzo and Manuel Fähndrich. 2008. Pentagons: A weakly relational
abstract domain for the efficient validation of array accesses. In SAC 2008: Pro-
ceedings of the 2008 ACM Symposium on Applied Computing. Fortaleza, Ceará,
Brazil, 184–188.

[38] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. 2015. Everything
you want to know about pointer-based checking. In SNAPL 2015: the Inaugural
Summit oN Advances in Programming Languages. Asilomar, CA, USA, 190–208.

[39] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley
Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans.
Program. Lang. Syst. 27, 3 (2005), 477–526.

[40] Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework for Heavy-
weight Dynamic Binary Insrumentation. In PLDI 2007: Proceedings of the ACM
SIGPLAN 2007 Conference on Programming Language Design and Implementation.
San Diego, CA, USA, 89–100.

[41] Serkan Özkan. 2018. CVE Details. https://www.cvedetails.com/
vulnerabilities-by-types.php. Summary of http://cve.mitre.org/.

[42] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Jeff H. Perkins, and
Michael D. Ernst. 2008. Practical pluggable types for Java. In ISSTA 2008, Proceed-
ings of the 2008 International Symposium on Software Testing and Analysis. Seattle,
WA, USA, 201–212.

[43] Frank Pfenning. 1992. Dependent types in logic programming. In Types in Logic
Programming, Frank Pfenning (Ed.). MIT Press, Cambridge, MA, Chapter 10,
285–311.

[44] William Pugh. 1991. The Omega test: a fast and practical integer programming
algorithm for dependence analysis. In Proceedings, Supercomputing ’91. Albu-
querque, New Mexico, 4–13.

[45] Feng Qian, Laurie Hendren, and Clark Verbrugge. 2002. A comprehensive ap-
proach to array bounds check elimination for Java. In CC 2002: Compiler Con-
struction: 11th International Conference. Grenoble, France, 325–341.

[46] Patrick M. Rondon, Ming Kawaguchi, and Ranjit Jhala. 2008. Liquid types. In
PLDI 2008: Proceedings of the ACM SIGPLAN 2008 Conference on Programming
Language Design and Implementation. Tucson, AZ, USA, 159–169.

[47] Joseph Santino. 2016. Enforcing correct array indexes with a type system. In
FSE 2016: Proceedings of the ACM SIGSOFT 24th Symposium on the Foundations of
Software Engineering. Seattle, WA, USA, 1142–1144.

[48] Norihisa Suzuki and Kiyoshi Ishihata. 1977. Implementation of an array bound
checker. In POPL ’77: Proceedings of the Fourth Annual ACM Symposium on Prin-
ciples of Programming Languages. Los Angeles, CA, 132–143.

http://cloc.sourceforge.net/
https://github.com/mernst/plume-lib
https://github.com/mernst/plume-lib
https://www.reuters.com/article/us-community-health-cybersecurity-idUSKBN0GK0H420140820
https://www.reuters.com/article/us-community-health-cybersecurity-idUSKBN0GK0H420140820
https://github.com/jfree/jfreechart
https://github.com/jfree/jfreechart
https://github.com/google/guava
https://github.com/google/guava
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
http://cve.mitre.org/


ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Martin Kellogg, Vlastimil Dort, Suzanne Millstein, and Michael D. Ernst

[49] David Tarditi. 2016. Extending C with bounds safety. https://github.com/
Microsoft/checkedc/releases/download/v0.6-final/checkedc-v0.6.pdf. Accessed:
2017-05-11.

[50] Shiyi Wei, Piotr Mardziel, Andrew Ruef, Jeffrey S. Foster, and Michael Hicks.
2018. Evaluating design tradeoffs in numeric static analysis for Java. In ESOP
2018: 27th European Symposium on Programming. Thessaloniki, Greece.

[51] Hongwei Xi and Frank Pfenning. 1998. Eliminating array bound checking through
dependent types. ACM SIGPLAN Notices 33, 5 (1998), 249–257.

[52] Wei Xu, Daniel C DuVarney, and R Sekar. 2004. An efficient and backwards-
compatible transformation to ensure memory safety of C programs. ACM SIG-
SOFT Software Engineering Notes 29, 6 (2004), 117–126.

https://github.com/Microsoft/checkedc/releases/download/v0.6-final/checkedc-v0.6.pdf
https://github.com/Microsoft/checkedc/releases/download/v0.6-final/checkedc-v0.6.pdf

	Abstract
	1 Introduction
	2 Verification via Cooperating Type Systems
	2.1 Background
	2.2 A Type System for Lower Bounds
	2.3 A Type System for Upper Bounds
	2.4 Type Systems for Constants
	2.5 A Type System for Minimum Array Lengths
	2.6 A Type System for Equal-length Arrays
	2.7 A Type System for Simple Linear Inequalities
	2.8 A Type System for Negative Indices
	2.9 Cyclic Type System Dependence

	3 Implementation
	4 Case Studies
	4.1 Guava Case Study
	4.2 JFreeChart Case Study
	4.3 Plume-lib Case Study
	4.4 Causes of False Positives
	4.5 Annotation Burden and Benefit

	5 Comparison to Other Approaches
	5.1 Case Study Programs
	5.2 Developer-accepted Bugs
	5.3 The Index Checker's Test Suite
	5.4 Clousot's Test Suite

	6 Discussion
	6.1 Limitations and Threats to Validity
	6.2 Fixed-length vs. Mutable-length Collections
	6.3 Types vs. Expressions

	7 Related Work
	8 Conclusion
	References

