
Accumulation Analysis

1

Martin Kellogga , Narges Shadabb , Manu Sridharanb,
Michael D. Ernsta

aUniversity of Washington bUniversity of California, Riverside

Problem: sound typestate analysis is expensive

2

Problem: sound typestate analysis is expensive

● Accumulation typestate automata are exactly those

that can be checked without aliasing information, the

traditional bottleneck for a typestate analysis

3

Problem: sound typestate analysis is expensive

● Accumulation typestate automata are exactly those

that can be checked without aliasing information, the

traditional bottleneck for a typestate analysis

● Accumulation typestate automata include important
problems like resource leaks, security vulnerabilities,

and initialization

4

Problem: sound typestate analysis is expensive

● Accumulation typestate automata are exactly those

that can be checked without aliasing information, the

traditional bottleneck for a typestate analysis

● Accumulation typestate automata include important
problems like resource leaks, security vulnerabilities,

and initialization

● For accumulation typestate problems, an accumulation

analysis is sound, precise, and fast
5

6

Talk outline

● Background on typestate

● Accumulation analysis
○ definitions & examples
○ proofs

● Literature survey

● Implications for practicality

7

Typestate analysis

● Classic static program analysis technique (Strom &

Yemeni, 1986)

● Extensive literature: over 18,000 hits on Google

Scholar

8

CLOSED

open()
OPENED

read(),
close()

close()

read()

open()

X

Typestate specification via FSM

9

CLOSED

open()
OPENED

read(),
close()

close()

read()

open()

X

Typestate specification via FSM

Our goal: prove that no File
ever enters this state

10

CLOSED

open()
OPENED

read(),
close()

read()

open()

X

File f = …;
f.open();
f.close();
f.read();

Typestate specification via FSM

close()

11

CLOSED

open()
OPENED

read(),
close()

read()

open()

X

f

Typestate specification via FSM

File f = …;
f.open();
f.close();
f.read();

close()

12

CLOSED

open()
OPENED

read(),
close()

read()

open()

X

f

Typestate specification via FSM

File f = …;
f.open();
f.close();
f.read();

close()

13

CLOSED

open()
OPENED

read(),
close()

read()

open()

X

f

Typestate specification via FSM

File f = …;
f.open();
f.close();
f.read();

close()

14

CLOSED

open()
OPENED

read(),
close()

read()

open()

X
f

Typestate error: f
cannot read() in
state CLOSED

Typestate specification via FSM

File f = …;
f.open();
f.close();
f.read();

close()

Sound typestate requires aliasing information

● A sound typestate analysis must track all aliases to keep

FSMs in sync

15

Sound typestate requires aliasing information

● A sound typestate analysis must track all aliases to keep

FSMs in sync

16

Soundness is important:
● enables verification vs. bug finding
● mission-critical domains

17

File f = …;
f.open();
File g = f;
f.close();
g.read();

CLOSED

open()
OPENED

read(),
close()

read()

open()

X

Why is typestate expensive?

close()

18

CLOSED

open()
OPENED

read(),
close()

read()

open()

X

Why is typestate expensive?

f

File f = …;
f.open();
File g = f;
f.close();
g.read();

close()

19

CLOSED

open()
OPENED

read(),
close()

read()

open()

X

Why is typestate expensive?

f File f = …;
f.open();
File g = f;
f.close();
g.read();

close()

20

CLOSED

open()
OPENED

read(),
close()

read()

open()

X

Why is typestate expensive?

f,g File f = …;
f.open();
File g = f;
f.close();
g.read();

close()

21

CLOSED

open()
OPENED

read(),
close()

read()

open()

X

Why is typestate expensive?

f

g File f = …;
f.open();
File g = f;
f.close();
g.read();

close()

22

CLOSED

open()
OPENED

read(),
close()

read()

open()

X

Why is typestate expensive?

f

g File f = …;
f.open();
File g = f;
f.close();
g.read();

close()

23

CLOSED

open()
OPENED

read(),
close()

read()

open()

X

Why is typestate expensive? Aliasing.

f

g

“false negative” = unsound!

File f = …;
f.open();
File g = f;
f.close();
g.read();

close()

24

CLOSED

open()
OPENED

read(),
close()

read()

open()

X

Why is typestate expensive? Aliasing.

f

g File f = …;
f.open();
File g = f;
f.close();
g.read();

close()

“false negative” = unsound!

Sound typestate requires aliasing information

● A sound typestate analysis must track all aliases to keep

FSMs in sync

25

Sound typestate requires aliasing information

● A sound typestate analysis must track all aliases to keep

FSMs in sync

● Three prior approaches:

26

Sound typestate requires aliasing information

● A sound typestate analysis must track all aliases to keep

FSMs in sync

● Three prior approaches:

1. whole-program may-alias analysis (expensive)

27

Tan et al. 2021 report hours for real programs

Sound typestate requires aliasing information

● A sound typestate analysis must track all aliases to keep

FSMs in sync

● Three prior approaches:

1. whole-program may-alias analysis (expensive)

2. restrict aliasing (e.g., via ownership types)

28

e.g., Bierhoff et al. 2009, Clark et al. 2013, Rust

Sound typestate requires aliasing information

● A sound typestate analysis must track all aliases to keep

FSMs in sync

● Three prior approaches:

1. whole-program may-alias analysis (expensive)

2. restrict aliasing (e.g., via ownership types)

3. ignore aliasing and be unsound (due to cost)

29

allows industry deployment, e.g., Emmi et al. 2021

Sound typestate requires aliasing information

● A sound typestate analysis must track all aliases to keep

FSMs in sync

● Three prior approaches:

1. whole-program may-alias analysis (expensive)

2. restrict aliasing (e.g., via ownership types)

3. ignore aliasing and be unsound (due to cost)

30

Key question: does typestate analysis
always need aliasing information?

Insight: aliasing information is only required
for some typestate automata

Which ones?

Key intuition: once an operation becomes legal,
it stays legal

31

Insight: aliasing information is only required
for some typestate automata

Which ones?

Key intuition: once an operation becomes legal,
it stays legal

32

Insight: aliasing information is only required
for some typestate automata

Which ones?

Key intuition: once an operation becomes legal,
it stays legal

33

Accumulation typestates

accumulation typestate automaton:

for any error-inducing sequence S = t1, …, ti,

all subsequences of S that end in ti

are also error-inducing

34

Accumulation typestates

accumulation typestate automaton:

for any error-inducing sequence S = t1, …, ti,

all subsequences of S that end in ti

are also error-inducing

Key theorem: Accumulation typestates are exactly those

that can be checked soundly without aliasing information

35

36

CLOSED

open()
OPENED

read(),
close()

close()

read()

open()

X

Is it an accumulation typestate automaton?
for any error-inducing sequence S = t1, …, ti,

all subsequences of S that end in ti

are also error-inducing

37

CLOSED

open()
OPENED

read(),
close()

close()

read()

open()

X

Is it an accumulation typestate automaton?
for any error-inducing sequence S = t1, …, ti,

all subsequences of S that end in ti

are also error-inducing

S = read()

38

CLOSED

open()
OPENED

read(),
close()

close()

read()

open()

X

Is it an accumulation typestate automaton?

S = open(), close(), read().

for any error-inducing sequence S = t1, …, ti,

all subsequences of S that end in ti

are also error-inducing

39

CLOSED

open()
OPENED

read(),
close()

close()

read()

open()

X

Is it an accumulation typestate automaton?

S = open(), close(), read().

S′ = open(), close(), read()
is not error-inducing!
⇒ not accumulation

for any error-inducing sequence S = t1, …, ti,

all subsequences of S that end in ti

are also error-inducing

40

CLOSED

open()
OPENED

read(),
close()

close()

read()

open()

X

Is it an accumulation typestate automaton?

S = open(), close(), read().

S′ = open(), close(), read()
is not error-inducing!
⇒ not accumulation

for any error-inducing sequence S = t1, …, ti,

all subsequences of S that end in ti

are also error-inducing

41

Is it an accumulation typestate automaton?

“only call read()

after calling open()”

for any error-inducing sequence S = t1, …, ti,

all subsequences of S that end in ti

are also error-inducing

42

Is it an accumulation typestate automaton?

CLOSED

open()
OPENED

read()

read()

X

for any error-inducing sequence S = t1, …, ti,

all subsequences of S that end in ti

are also error-inducing

“only call read()

after calling open()”

43

Is it an accumulation typestate automaton?

CLOSED

open()
OPENED

read()

read()

X

for any error-inducing sequence S = t1, …, ti,

all subsequences of S that end in ti

are also error-inducing

S = read()

⇒ YES accumulation!

“only call read()

after calling open()”

44

Is it an accumulation typestate automaton?

CLOSED

open()
OPENED

read()

read()

X

for any error-inducing sequence S = t1, …, ti,

all subsequences of S that end in ti

are also error-inducing

S = read()

⇒ YES accumulation!

“only call read()

after calling open()”

45

Aside: how hard is it to decide if a typestate
automaton is accumulation?

46

Aside: how hard is it to decide if a typestate
automaton is accumulation?

● As easy as checking DFA equivalence

○ Result due to Higman’s Theorem (1952)

47

Aside: how hard is it to decide if a typestate
automaton is accumulation?

● As easy as checking DFA equivalence

○ Result due to Higman’s Theorem (1952)

“The subsequence language of any language
whatsoever over a finite alphabet is regular.”

Accumulation typestates

accumulation typestate automaton:

for any error-inducing sequence S = t1, …, ti,

all subsequences of S that end in ti

are also error-inducing

Key theorem: Accumulation typestates are exactly those

that can be checked soundly without aliasing information

48

Accumulation typestates

accumulation typestate automaton:

for any error-inducing sequence S = t1, …, ti,

all subsequences of S that end in ti

are also error-inducing

Key theorem: Accumulation typestates are exactly those

that can be checked soundly without aliasing information

49

Proof

Key theorem: Accumulation typestates are exactly those

that can be checked soundly without aliasing information

50

Proof

Key theorem: Accumulation typestates are exactly those

that can be checked soundly without aliasing information

1. ⇒ (“all accumulation typestates can be checked

soundly without aliasing information”)

2. ⇐ (“only accumulation typestates can be checked

soundly without aliasing information”)

51

Accumulation typestate ⇒
soundly checkable without aliasing information

52

1. without aliasing information, analysis observes a
subsequence of actual transitions

53

Accumulation typestate ⇒
soundly checkable without aliasing information

1. without aliasing information, analysis observes a
subsequence of actual transitions

2. if analysis observes a transition that leads to an error

at run time, the final transition must be error-inducing

54

Accumulation typestate ⇒
soundly checkable without aliasing information

1. without aliasing information, analysis observes a
subsequence of actual transitions

2. if analysis observes a transition that leads to an error

at run time, the final transition must be error-inducing

55

for any error-inducing sequence S = t1, …, ti,

all subsequences of S that end in ti

are also error-inducing

Accumulation typestate ⇒
soundly checkable without aliasing information

Soundly checkable without aliasing information ⇒
accumulation typestate

56

Soundly checkable without aliasing information ⇒
accumulation typestate

1. suppose we have a non-accumulation typestate that

can be checked without aliasing information

57

Soundly checkable without aliasing information ⇒
accumulation typestate

1. suppose we have a non-accumulation typestate that

can be checked without aliasing information

2. this automaton has an error-inducing sequence S with

a non-error-inducing subsequence S’

58

Soundly checkable without aliasing information ⇒
accumulation typestate

1. suppose we have a non-accumulation typestate that

can be checked without aliasing information

2. this automaton has an error-inducing sequence S with

a non-error-inducing subsequence S’

59

for any error-inducing sequence S = t1, …, ti,

all subsequences of S that end in ti

are also error-inducing

Soundly checkable without aliasing information ⇒
accumulation typestate

1. suppose we have a non-accumulation typestate that

can be checked without aliasing information

2. this automaton has an error-inducing sequence S with

a non-error-inducing subsequence S’

60

for any error-inducing sequence S = t1, …, ti,

all subsequences of S that end in ti

are also error-inducing

Soundly checkable without aliasing information ⇒
accumulation typestate

1. suppose we have a non-accumulation typestate that

can be checked without aliasing information

2. this automaton has an error-inducing sequence S with

a non-error-inducing subsequence S’
3. construct a program with two aliased variables: do

S - S’ on the first, and S’ on the second

61

Soundly checkable without aliasing information ⇒
accumulation typestate

1. suppose we have a non-accumulation typestate that

can be checked without aliasing information

2. this automaton has an error-inducing sequence S with

a non-error-inducing subsequence S’
3. construct a program with two aliased variables: do

S - S’ on the first, and S’ on the second

62

x
1

 = x
2

∀ t
1

 ∈ S - S’, x
1

.t
1

()

∀ t
2

 ∈ S’, x
2

.t
2

()

contradiction: v must be in an error state (S is error-inducing),
but the analysis cannot issue an error (S’ is non-error-inducing)

Soundly checkable without aliasing information ⇒
accumulation typestate

1. suppose we have a non-accumulation typestate that

can be checked without aliasing information

2. this automaton has an error-inducing sequence S with

a non-error-inducing subsequence S’
3. construct a program with two aliased variables: do

S - S’ on the first, and S’ on the second

63

x
1

 = x
2

∀ t
1

 ∈ S - S’, x
1

.t
1

()

∀ t
2

 ∈ S’, x
2

.t
2

()

contradiction: v must be in an error state (S is error-inducing),
but the analysis cannot issue an error (S’ is non-error-inducing)

both point to a single value v

Soundly checkable without aliasing information ⇒
accumulation typestate

1. suppose we have a non-accumulation typestate that

can be checked without aliasing information

2. this automaton has an error-inducing sequence S with

a non-error-inducing subsequence S’
3. construct a program with two aliased variables: do

S - S’ on the first, and S’ on the second

64

x
1

 = x
2

∀ t ∈ S:
if t ∈ S - S’: x

1
.t()

else if t ∈ S’: x
2

.t()

both point to a single value v

Soundly checkable without aliasing information ⇒
accumulation typestate

1. suppose we have a non-accumulation typestate that

can be checked without aliasing information

2. this automaton has an error-inducing sequence S with

a non-error-inducing subsequence S’
3. construct a program with two aliased variables: do

S - S’ on the first, and S’ on the second

65

x
1

 = x
2

∀ t ∈ S:
if t ∈ S - S’: x

1
.t()

else if t ∈ S’: x
2

.t()

contradiction: v must be in an error state (S is error-inducing),
but analysis cannot warn about x

2
 (S’ is non-error-inducing)

both point to a single value v

Soundly checkable without aliasing information ⇒
accumulation typestate

1. suppose we have a non-accumulation typestate that

can be checked without aliasing information

2. this automaton has an error-inducing sequence S with

a non-error-inducing subsequence S’
3. construct a program with two aliased variables: do

S - S’ on the first, and S’ on the second

66

x
1

 = x
2

∀ t ∈ S:
if t ∈ S - S’: x

1
.t()

else if t ∈ S’: x
2

.t()

contradiction: v must be in an error state (S is error-inducing),
but analysis cannot warn about x

2
 (S’ is non-error-inducing)

both point to a single value v

the “sound” analysis
misses the real error!

Proof

Key theorem: Accumulation typestates are exactly those

that can be checked soundly without aliasing information

1. ⇒(“all accumulation typestates can be checked

soundly without aliasing information”)

2. ⇐ (“only accumulation typestates can be checked

soundly without aliasing information”)

67

How common is accumulation?

68

How common is accumulation?

● Literature survey of 188 typestate papers since 1999

69

How common is accumulation?

● Literature survey of 188 typestate papers since 1999

○ 85 with no typestate automata

70

How common is accumulation?

● Literature survey of 188 typestate papers since 1999

○ 85 with no typestate automata

71

How common is accumulation?

● Literature survey of 188 typestate papers since 1999

○ 85 with no typestate automata

○ 101 papers with < 20 examples

72

How common is accumulation?

● Literature survey of 188 typestate papers since 1999

○ 85 with no typestate automata

○ 101 papers with < 20 examples

○ 2 papers with categories of automata:

■ Dwyer et al. (ICSE 1999)

■ Beckman et al. (ECOOP 2011)

73

How common is accumulation?

● Literature survey of 188 typestate papers since 1999

○ 85 with no typestate automata

○ 101 papers with < 20 examples

○ 2 papers with categories of automata:

■ Dwyer et al. (ICSE 1999)

■ Beckman et al. (ECOOP 2011)

74

67 / 302

How common is accumulation?

● Literature survey of 188 typestate papers since 1999

○ 85 with no typestate automata

○ 101 papers with < 20 examples

○ 2 papers with categories of automata:

■ Dwyer et al. (ICSE 1999)

■ Beckman et al. (ECOOP 2011)

75

67 / 302

306 / 511

How common is accumulation?

● Literature survey of 188 typestate papers since 1999

○ 85 with no typestate automata

○ 101 papers with < 20 examples

○ 2 papers with categories of automata:

■ Dwyer et al. (ICSE 1999)

■ Beckman et al. (ECOOP 2011)

76

67 / 302

306 / 511

182 / 542

How common is accumulation: takeaways

● 555 / 1355 (41%) of typestate automata are

accumulation

77

How common is accumulation: takeaways

● 555 / 1355 (41%) of typestate automata are

accumulation

● Higher proportion of accumulation TSA in large

collections: more common in practice?

78

How common is accumulation: takeaways

● 555 / 1355 (41%) of typestate automata are

accumulation

● Higher proportion of accumulation TSA in large

collections: more common in practice?
● Our artifact includes all the TSAs we saw

 https://doi.org/10.5281/zenodo.5771196

79

https://doi.org/10.5281/zenodo.5771196

Practicality of accumulation

80

Practicality of accumulation

81

Source LoC ~9.1M

True positives 16

False positives 3

Kellogg, Ran, Sridharan, Schaef, Ernst. Verifying Object Construction. ICSE 2020.

Practicality of accumulation

82

Source LoC ~9.1M

True positives 16

False positives 3

Kellogg, Ran, Sridharan, Schaef, Ernst. Verifying Object Construction. ICSE 2020.

100% recall,
82% precision

83

Recall

RLC (ours)

Eclipse

Grapple

100%

Precision

Eclipse

100%

RLC (ours)

Grapple

Time

Eclipse

RLC (ours)

Grapple

~37 hrs

Practicality of accumulation

Kellogg, Shadab, Sridharan, Ernst. Lightweight and Modular Resource Leak Verification. ESEC/FSE 2021.

84

Recall

RLC (ours)

Eclipse

Grapple

100%

Precision

Eclipse

100%

RLC (ours)

Grapple

Time

Eclipse

RLC (ours)

Grapple

~37 hrs

Practicality of accumulation

Kellogg, Shadab, Sridharan, Ernst. Lightweight and Modular Resource Leak Verification. ESEC/FSE 2021.

85

Recall

RLC (ours)

Eclipse

Grapple

100%

Precision

Eclipse

100%

RLC (ours)

Grapple

Time

Eclipse

Grapple ...

1 hr

RLC (ours)

Practicality of accumulation

Kellogg, Shadab, Sridharan, Ernst. Lightweight and Modular Resource Leak Verification. ESEC/FSE 2021.

Practicality of accumulation

● Important lessons:

86

Practicality of accumulation

● Important lessons:

○ when accumulation is applicable, it produces

analyses that are sound, precise, and fast

87

Practicality of accumulation

● Important lessons:

○ when accumulation is applicable, it produces

analyses that are sound, precise, and fast
○ cheap, local alias reasoning is always useful for

precision

88

Practicality of accumulation

● Important lessons:

○ when accumulation is applicable, it produces

analyses that are sound, precise, and fast
○ cheap, local alias reasoning is always useful for

precision

○ sound with no aliasing information ⇒
sound with limited aliasing information

89

Contributions

● Identification of the accumulation typestate automata,

a new, important subset of typestates

● Proof that accumulation typestates are exactly those

checkable without aliasing information
● 41% of typestate automata are accumulation

● Practical accumulation analyses are sound, precise, and

fast

90

Contributions

● Identification of the accumulation typestate automata,

a new, important subset of typestates

● Proof that accumulation typestates are exactly those

checkable without aliasing information
● 41% of typestate automata are accumulation

● Practical accumulation analyses are sound, precise, and

fast

91

