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Problem: sound typestate analysis is expensive

● Accumulation typestate automata are exactly those 

that can be checked without aliasing information, the 

traditional bottleneck for a typestate analysis

● Accumulation typestate automata include important 
problems like resource leaks, security vulnerabilities, 

and initialization

● For accumulation typestate problems, an accumulation 

analysis is sound, precise, and fast
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Talk outline

● Background on typestate

● Accumulation analysis
○ definitions & examples
○ proofs

● Literature survey

● Implications for practicality
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Typestate analysis

● Classic static program analysis technique (Strom & 

Yemeni, 1986)

● Extensive literature: over 18,000 hits on Google 

Scholar
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FSMs in sync
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Soundness is important:
● enables verification vs. bug finding
● mission-critical domains
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Tan et al. 2021 report hours for real programs
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e.g., Bierhoff et al. 2009, Clark et al. 2013, Rust
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allows industry deployment, e.g., Emmi et al. 2021



Sound typestate requires aliasing information

● A sound typestate analysis must track all aliases to keep 

FSMs in sync

● Three prior approaches:

1. whole-program may-alias analysis (expensive)

2. restrict aliasing (e.g., via ownership types) 

3. ignore aliasing and be unsound (due to cost)
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Key question: does typestate analysis 
always need aliasing information?
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Key intuition: once an operation becomes legal, 
it stays legal
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Is it an accumulation typestate automaton?

“only call read() 

after calling open()”
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all subsequences of S that end in ti 

are also error-inducing
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Aside: how hard is it to decide if a typestate 
automaton is accumulation?
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automaton is accumulation?

● As easy as checking DFA equivalence

○ Result due to Higman’s Theorem (1952)
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Aside: how hard is it to decide if a typestate 
automaton is accumulation?

● As easy as checking DFA equivalence

○ Result due to Higman’s Theorem (1952)

“The subsequence language of any language 
whatsoever over a finite alphabet is regular.”
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Proof

Key theorem: Accumulation typestates are exactly those 

that can be checked soundly without aliasing information

1. ⇒ (“all accumulation typestates can be checked 

soundly without aliasing information”)

2. ⇐ (“only accumulation typestates can be checked 

soundly without aliasing information”)
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for any error-inducing sequence S = t1, …, ti, 

all subsequences of S that end in ti 

are also error-inducing

Accumulation typestate ⇒ 
soundly checkable without aliasing information
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are also error-inducing
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1. suppose we have a non-accumulation typestate that 
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but analysis cannot warn about x

2
 (S’ is non-error-inducing)

both point to a single value v

the “sound” analysis 
misses the real error!



Proof 

Key theorem: Accumulation typestates are exactly those 

that can be checked soundly without aliasing information

1. ⇒(“all accumulation typestates can be checked 

soundly without aliasing information”)

2. ⇐ (“only accumulation typestates can be checked 

soundly without aliasing information”)
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● Literature survey of 188 typestate papers since 1999

○ 85 with no typestate automata

○ 101 papers with < 20 examples

○ 2 papers with categories of automata:

■ Dwyer et al. (ICSE 1999)

■ Beckman et al. (ECOOP 2011)
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How common is accumulation: takeaways

● 555 / 1355 (41%) of typestate automata are 

accumulation

● Higher proportion of accumulation TSA in large 

collections: more common in practice?
● Our artifact includes all the TSAs we saw

 https://doi.org/10.5281/zenodo.5771196
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https://doi.org/10.5281/zenodo.5771196
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Source LoC ~9.1M

True positives 16

False positives 3

Kellogg, Ran, Sridharan, Schaef, Ernst. Verifying Object Construction. ICSE 2020.
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Source LoC ~9.1M

True positives 16

False positives 3

Kellogg, Ran, Sridharan, Schaef, Ernst. Verifying Object Construction. ICSE 2020.

100% recall, 
82% precision
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100%

Precision

Eclipse

100%

RLC (ours)
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Time

Eclipse

RLC (ours)

Grapple

~37 hrs

Practicality of accumulation

Kellogg, Shadab, Sridharan, Ernst. Lightweight and Modular Resource Leak Verification. ESEC/FSE 2021.
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Recall

RLC (ours)

Eclipse

Grapple

100%

Precision

Eclipse

100%

RLC (ours)

Grapple

Time

Eclipse

Grapple                                        ...

1 hr

RLC (ours)

Practicality of accumulation

Kellogg, Shadab, Sridharan, Ernst. Lightweight and Modular Resource Leak Verification. ESEC/FSE 2021.
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Practicality of accumulation

● Important lessons:

○ when accumulation is applicable, it produces 

analyses that are sound, precise, and fast
○ cheap, local alias reasoning is always useful for 

precision

○ sound with no aliasing information ⇒
sound with limited aliasing information
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Contributions

● Identification of the accumulation typestate automata, 

a new, important subset of typestates 

● Proof that accumulation typestates are exactly those 

checkable without aliasing information
● 41% of typestate automata are accumulation

● Practical accumulation analyses are sound, precise, and 

fast
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