Accumulation Analysis

Martin Kellogg?, Narges Shadab®, Manu Sridharan®,
Michael D. Ernst?

aUniversity of Washington bUniversity of California, Riverside

Problem: sound typestate analysis is expensive

Problem: sound typestate analysis is expensive

e Accumulation typestate automata are exactly those
that can be checked without aliasing information, the
traditional bottleneck for a typestate analysis

Problem: sound typestate analysis is expensive

e Accumulation typestate automata are exactly those
that can be checked without aliasing information, the
traditional bottleneck for a typestate analysis

e Accumulation typestate automata include important
problems like resource leaks, security vulnerabilities,
and initialization

Problem: sound typestate analysis is expensive

e Accumulation typestate automata are exactly those
that can be checked without aliasing information, the
traditional bottleneck for a typestate analysis

e Accumulation typestate automata include important
problems like resource leaks, security vulnerabilities,
and initialization

e For accumulation typestate problems, an accumulation
analysis is

Talk outline

e Background on typestate

e Accumulation analysis

o definitions & examples
o proofs

e Literature survey
e |mplications for practicality

Typestate analysis

e Classic static program analysis technique (Strom &
Yemeni, 1986)

e Extensive literature: over 18,000 hits on Google
Scholar

Typestate specification via FSM

Typestate specification via FSM

\ Our goal: prove that no File
ever enters this state

Typestate specification via FSM

File £ = ..;
f.open ()
f.close();
f.read();

Typestate specification via FSM

File £ = ..; 4
f.open ()
f.close();
f.read();

Typestate specification via FSM

File £ = ..;
f.open ()
f.close();
f.read();

<

Typestate specification via FSM

File £ = ..;
f.open ()
f.close(); 4
f.read();

Typestate specification via FSM

File £ =

f.open();

f.close();
open () f.read () ;

Typestate error: f
cannot read() in
state CLOSED

L]
cee J

<

14

Sound typestate requires aliasing information

e A sound typestate analysis must track all aliases to keep
FSMs in sync

15

Sound typestate requires aliasing information

e A sound typestate analysis must track all aliases to keep

FSM.% In sync

Soundness is important:
e enables verification vs. bug finding
e mission-critical domains

16

Why is typestate expensive?

f.open ()
(

) 7

f.close
.read () ;

L]
cee J

£;

17

Why is typestate expensive?

£;

f.open ()
()7

f.close
.read () ;

18

Why is typestate expensive?

f.open();
(

f.close
.read () ;

) 7

L]
cee J

£;

19

Why is typestate expensive?

f.open();
(

f.close
.read () ;

) 7

L]
cee J

£;

<

20

Why is typestate expensive?

read () (‘q

f.open ()
(

f.close
.read () ;

) 7

L]
cee J

£;

<

21

Why is typestate expensive?

f.open ()
(

f.close
.read () ;

) 7

L]
cee J

£;

<

22

Why is typestate expensive? Aliasing.

f.open();
(

f.close
.read () ;

“false negative”

) 7

L]
cee J

£;

<

23

Why is typestate expensive? Aliasing.

S File £ = ..;
J f.open();
A1/<>/ File g = £;
open () f. close()
.read (

close ()

. “false negatlve = unsound!

Sound typestate requires aliasing information

e A sound typestate analysis must track all aliases to keep
FSMs in sync

25

Sound typestate requires aliasing information

e A sound typestate analysis must track all aliases to keep
FSMs in sync
e Three prior approaches:

26

Sound typestate requires aliasing information

e A sound typestate analysis must track all aliases to keep
FSMs in sync

e Three prior approaches:
1. whole-program may-alias analysis (expensive)

|—> Tan et al. 2021 report hours for real programs

27

Sound typestate requires aliasing information

e A sound typestate analysis must track all aliases to keep
FSMs in sync

e Three prior approaches:
1. whole-program may-alias analysis (expensive)
2. (e.g., via ownership types)

e.g., Bierhoff et al. 2009, Clark et al. 2013, Rust

28

Sound typestate requires aliasing information

e A sound typestate analysis must track all aliases to keep
FSMs in sync
e Three prior approaches:
1. whole-program may-alias analysis (expensive)
2. (e.g., via ownership types)
3. ignore aliasing and be unsound (due to cost)

» allows industry deployment, e.g., Emmi et al. 2021

29

Sound typestate requires aliasing information

e A sound typestate analysis must track all aliases to keep
FSMs in sync
e Three prior approaches:
1. whole-program may-alias analysis (expensive)
2. (e.g., via ownership types)
3. ignore aliasing and be unsound (due to cost)

Key question: does typestate analysis
need aliasing information?

30

Insight: aliasing information is only required
for some typestate automata

31

Insight: aliasing information is only required
for some typestate automata

Which ones?

32

Insight: aliasing information is only required
for some typestate automata

Which ones?

Key intuition: once an operation becomes legal,
it stays legal

33

Accumulation typestates

accumulation typestate automaton:

for any error-inducing sequence S = t, ..t
all subsequences of Sthatendint,

are also error-inducing

34

Accumulation typestates

accumulation typestate automaton:

for any error-inducing sequence S = t, ..t
all subsequences of Sthatendint,

are also error-inducing

Key theorem: Accumulation typestates are exactly those
that can be checked soundly

35

|s it an accumulation typestate automaton?

for any error-inducing sequence S =t , ...,
all subsequences of Sthatendint,
are also error-inducing

t)

1

36

|s it an accumulation typestate automaton?

for any error-inducing sequence S =t , ...,
all subsequences of Sthatendint,
are also error-inducing

t)

1

S=read()

37

|s it an accumulation typestate automaton?

for any error-inducing sequenceS =t , ..., t,
all subsequences of Sthatendint,
are also error-inducing

S=open(),close(),read().

38

|s it an accumulation typestate automaton?

read (

open (

all subsequences of Sthatendint,
are also error-inducing

for any error-inducing sequence S =t , ...

’ t”

S=open(),close(), read().

S' = open (), eroset, read ()
is not error-inducing!

39

|s it an accumulation typestate automaton?

close ()

read (

close

open (

all subsequences of Sthatendint,
are also error-inducing

for any error-inducing sequence S=t,

ot

S=open(),close(), read().

S'= open (),etreoset, read ()
is not error-inducing!
= not accumulation

40

|s it an accumulation typestate automaton?

“only call read ()
after calling open ()

»

for any error-inducing sequenceS =t , ..., t,

all subsequences of Sthatend in t.
are also error-inducing

41

|s it an accumulation typestate automaton?

« for any error-inducing sequenceS =t , ..., t,
Only Ca” read () all subsequences of Sthatendint,

after Ca”ing open () ” are also error-inducing

read ()

|s it an accumulation typestate automaton?

« for any error-inducing sequenceS =t , ..., t,
Only Ca” read () all subsequences of Sthatendint,

after Ca”ing open () ” are also error-inducing

o
S =read()

read ()

|s it an accumulation typestate automaton?

« for any error-inducing sequenceS =t , ..., t,
Only Ca” read () all subsequences of Sthatendint,

after Ca”ing open () ” are also error-inducing

read ()

o
S =read()

= YES accumulation!

Aside: how hard is it to decide if a typestate
automaton is accumulation?

45

Aside: how hard is it to decide if a typestate
automaton is accumulation?

e As easy as checking DFA equivalence
o Result due to Higman's Theorem (1952)

46

Aside: how hard is it to decide if a typestate
automaton is accumulation?

e As easy as checking DFA equivalence
o Result due to Higman's Theorem (1952)

“The subsequence language of any language
whatsoever over a finite alphabet is regular.”

47

Accumulation typestates

accumulation typestate automaton:

for any error-inducing sequence S = t, ..t
all subsequences of Sthatendint,

are also error-inducing

Key theorem: Accumulation typestates are exactly those
that can be checked soundly

48

Accumulation typestates

accumulation typestate automaton:

for any error-inducing sequence S = t, ..t
all subsequences of Sthatendint,

are also error-inducing

Key theorem: Accumulation typestates are exactly those
that can be checked soundly

49

Proof

|

Key theorem: Accumulation typestates are
that can be checked soundly

those]

50

Proof

|

Key theorem: Accumulation typestates are those
that can be checked soundly

1. = (“all accumulation typestates can be checked

soundly without aliasing information”)
2. < (“only accumulation typestates can be checked

soundly without aliasing information”)

51

Accumulation typestate =
soundly checkable without aliasing information

52

Accumulation typestate =
soundly checkable without aliasing information

1. without aliasing information, analysis observes a
subsequence of actual transitions

53

Accumulation typestate =
soundly checkable without aliasing information

1. without aliasing information, analysis observes a
subsequence of actual transitions

2. if analysis observes a transition that leads to an error
at run time, the final transition must be error-inducing

54

Accumulation typestate =
soundly checkable without aliasing information

1.

without aliasing information, analysis observes a
subsequence of actual transitions

if analysis observes a transition that leads to an error
at run time, the final transition must be error-inducing

for any error-inducing sequence S=t,, ..., t,
all subsequences of Sthatendin t,
are also error-inducing

55

Soundly checkable without aliasing information =
accumulation typestate

56

Soundly checkable without aliasing information =
accumulation typestate

1. we have a non-accumulation typestate that
can be checked without aliasing information

57

Soundly checkable without aliasing information =
accumulation typestate

1. we have a non-accumulation typestate that

can be checked without aliasing information
2. this automaton has an error-inducing sequence S with

a non-error-inducing subsequence S’

58

Soundly checkable without aliasing information =
accumulation typestate

1. we have a non-accumulation typestate that

can be checked without aliasing information
2. this automaton has an error-inducing sequence S with

a non-error-inducing subsequence S’

for any error-inducing sequenceS=t,, ..., t,
all subsequences of Sthatend int,
are also error-inducing

59

Soundly checkable without aliasing information =
accumulation typestate

1. we have a non-accumulation typestate that

can be checked without aliasing information
2. this automaton has an error-inducing sequence S with

a non-error-inducing subsequence S’

for any erijim ing se Ft, .t
all subseque t
arealsoe ucing

60

Soundly checkable without aliasing information =
accumulation typestate

1. we have a non-accumulation typestate that
can be checked without aliasing information

2. this automaton has an error-inducing sequence S with
a non-error-inducing subsequence S’

3. construct a program with two aliased variables: do
S-S’ onthefirst,and S’ on the second

61

Soundly checkable without aliasing information =
accumulation typestate

1X=X

Soundly checkable without aliasing information =
accumulation typestate

1| X =X, < both point to a single value v

Soundly checkable without aliasing information =
accumulation typestate

1| X =X, < both point to a single value v

VteSs:
2 ifteS-S" x,.t() |
elseift €S x,.t()

Soundly checkable without aliasing information =

accumulation typestate

1

X, =X, < both point to a single value v
VteSsS:

ifteS-S" x,.t()

elseift €S x,.t()
contradiction: v must be in an error state (S is error-inducing),

but analysis cannot warn about x,, (S’ is non-error-inducing)

65

Soundly checkable without aliasing information =

accumulation typestate

1

X, =X, <
VteSsS:
ifteS-S" x,.t()
elseift €S x,.t()
contradiction: vmust bein a

both point

nme

to asingle value v

the “sound” analysis
misses the real error!

(Sis error-inducing),

but[analysis cannot warn about xz](S’ is non-error-inducing)

66

Proof

|

Key theorem: Accumulation typestates are those
that can be checked soundly

1. =(“all accumulation typestates can be checked

soundly without aliasing information”)
2. < (“only accumulation typestates can be checked

soundly without aliasing information”)

67

How common is accumulation?

68

How common is accumulation?

e Literature survey of 188 typestate papers since 1999

69

How common is accumulation?

e Literature survey of 188 typestate papers since 1999
o 85 with no typestate automata

70

How common is accumulation?

e Literature survey of 188 typestate papers since 1999
—Sviithe-bypestateauteormata

71

How common is accumulation?

e Literature survey of 188 typestate papers since 1999

—Sviithe-bypestateauteormata
o 101 papers with < 20 examples

72

How common is accumulation?

e Literature survey of 188 typestate papers since 1999
—Sviithe-bypestateauteormata
o 101 papers with < 20 examples
o 2 papers with categories of automata:
m Dwyer et al. (ICSE 1999)
m Beckmanetal. (ECOOP 2011)

73

How common is accumulation?

e Literature survey of 188 typestate paper<eiaeadnQ

o—&5withro-typestate-attomata 67 /302
/

D

o 101 papers with < 20 examples

o 2 papers with categories of automata:
m Dwyer et al. (ICSE 1999)
m Beckmanetal. (ECOOP 2011)

74

How common is accumulation?

e Literature survey of 188 typestate paper<eiaeadnQ

o 2oy

D

67 /302

o 101 papers with < 20 examples

o 2 papers with categories of automata:
m Dwyer et al. (ICSE 1999)
m Beckmanetal. (ECOOP 2011)

306/511

75

How common is accumulation?

e Literature survey of 188 typestate paper<eiaeadnQ

o 2oy

D

67 /302

o 101 papers with < 20 examples

o 2 papers with categories of automata:
m Dwyer et al. (ICSE 1999)
m Beckmanetal. (ECOOP 2011)

306/511

76

How common is accumulation: takeaways

e 555/1355 (41%) of typestate automata are
accumulation

77

How common is accumulation: takeaways

e 555/1355 (41%) of typestate automata are
accumulation

e Higher proportion of accumulation TSA in large
collections:

78

How common is accumulation: takeaways

555/ 1355 (41%) of typestate automata are
accumulation

Higher proportion of accumulation TSA in large
collections:

Our artifact includes all the TSAs we saw

https://doi.org/10.5281/zenodo.5771196

79

https://doi.org/10.5281/zenodo.5771196

Practicality of accumulation

80

Practicality of accumulation

Source LoC ~9.1M
True positives |16

False positives 3

81

Practicality of accumulation

Source LoC
True positive

False positiveys

~9.1M

100% recall,
82% precision

82

Practicality of accumulation

Recall Precision Time
e [U R ours
Eclipse Eclipse Eclipse
100% 100% ~37 hrs

Kellogg, Shadab, Sridharan, Ernst. Lightweight and Modular Resource Leak Verification. ESEC/FSE 2021. 83

Practicality of accumulation

Recall Precision
o RLCour
Eclipse Eclipse Eclipse
Grapple

100% 100%

Practicality of accumulation

Recall

Precision

OIS B oo

Eclipse

I Grapple

Kellogg, Shadab, Sridharan, Ernst. Lightweight and Modular Resource Leak Verification. ESEC/FSE 2021.

100%

Eclipse

100%

Time

- RLC (ours)

Eclipse

Grapple

1hr

85

Practicality of accumulation

e Important lessons:

86

Practicality of accumulation

e Important lessons:
o when accumulation is applicable, it produces
analyses that are sound, precise, and fast

87

Practicality of accumulation

e Important lessons:
o when accumulation is applicable, it produces
analyses that are sound, precise, and fast

o cheap, local alias reasoning is always useful for
precision

88

Practicality of accumulation

e Important lessons:

O

when accumulation is applicable, it produces
analyses that are sound, precise, and fast
cheap, local alias reasoning is always useful for
precision

sound with no aliasing information =
sound with limited aliasing information

89

Contributions

e |dentification of the accumulation typestate automata,
a new, important subset of typestates

e Proof that accumulation typestates are exactly those
checkable without aliasing information

° of typestate automata are accumulation

e Practical accumulation analyses are sound, precise, and

fast

90

Contributions

e |dentification of the accumulation typestate automata,
a new, important subset of typestates

e Proof that accumulation typestates are exactly those
checkable without aliasing information

° of typestate automata are accumulation

e Practical accumulation analyses are sound, precise, and

fast

91

