
Dynamic Inference of Abstract Types

Philip J. Guo Jeff H. Perkins Stephen McCamant Michael D. Ernst
MIT Computer Science and Artificial Intelligence Lab

Cambridge, MA, USA
{ pgbovine,jhp,smcc,mernst} @csail.mit.edu

Abstract
An abstract type groups variables that are used for related purposes
in a program. We describe a dynamic unification-based analysis
for inferring abstract types. Initially, each run-time value gets a
unique abstract type. A run-time interaction among values indi-
cates that they have the same abstract type, so their abstract types
are unified. Also at run time, abstract types for variables are ac-
cumulated from abstract types for values. The notion of interac-
tion may be customized, permitting the analysis to compute finer
or coarser abstract types; these different notions of abstract type
are useful for different tasks. We have implemented the analysis
for compiled x86 binaries and for Java bytecodes. Our experiments
indicate that the inferred abstract types are useful for program com-
prehension, improve both the results and the run time of a follow-on
program analysis, and are more precise than the output of a com-
parable static analysis, without suffering from overfitting.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Techniques

General Terms
Languages, Experimentation

Keywords
abstract types, type inference, dynamic analysis, C, C++, Java, in-
teraction, mixed-level analysis, units, values and variables

1. Introduction
Even in explicitly-typed languages, the declared types capture

only a portion of the programmer’s intent and knowledge about
variable values. For example, a programmer may use theint type
to represent array indices, sensor measurements, the current time,
file descriptors, counts, memory addresses, and a host of other un-
related quantities. The typePair<int,int> can represent the co-
ordinates of a point, a Celsius/Fahrenheit conversion, a quotient
and remainder returned from a division procedure, etc. Different
strings or files can represent distinct concepts. Regular expressions
can be applicable to different contents. Variables declared with the
same generic type, such asObject or Comparable , need not hold
related values. Figure 1 contains an example.

Use of a single programming language type obscures the dif-
ferences among conceptually distinct values. This can hinder pro-
grammers in understanding, using, and modifying the code, and can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’06,July 17–20, 2006, Portland, Maine, USA.
Copyright 2006 ACM 1-59593-263-1/06/0007 ...$5.00.

hinder tools in performing analyses on code. Therefore, it is desir-
able to recover finer-grained type information than is expressed in
the declared types. We call these finer typesabstract types; this
paper presents a dynamic analysis for inferring abstract types.

Abstract types are useful for program understanding [25].

• They can identify ADTs (abstract data types) by indicating
which instances of a declared type are related and which are
independent.

• They can reveal abstraction violations when the inferred ab-
stract types unify values that should be separate, as indicated
by either the declared types or a programmer’s expectations.

• They can indicate where a value may be referenced (only at
expressions that are abstract-type-compatible with the value).

• They can be integrated into the program, effectively giving
the program a richer type system that can be checked at com-
pile time. For instance, this could be done usingtypedef
declarations in C or ADTs in an object-oriented language.

The finer-grained abstract type information can also be supplied
to a subsequent analysis to improve the run time or the results of
that analysis. Since our abstract type inference is dynamic, its
results are most applicable to a follow-on analysis that does not
require sound information (for example, using it as optimization
hints), that is itself unsound (such as a dynamic analysis, or many
machine learning algorithms), that verifies its input, or that pro-
duces results for human examination (since people are resilient to
minor inaccuracies). Here are a few examples of such analyses.

• Dynamic invariant detection [7, 19, 13] is a machine learn-
ing technique that infers relationships among variable val-
ues. Abstract types indicate which variables may be sensi-
bly compared to one another. Directing the detection tool to
avoid meaningless comparisons eliminates unnecessary com-
putation and avoids overfitting [8].

• Principal components analysis (PCA) approximates a high-
dimensional dataset with a lower-dimensional one, by find-
ing correlations among variables. Such correlations permit a
variable to be approximated by a combination of other vari-
ables; the reduced dataset is generally easier for humans to
understand. Abstract types can indicate variables that arenot
related and thus whose correlations would be coincidental.
For example, they could be applied to work that uses PCA
over program traces to group program constructs [17].

• Dynamic analysis has been used to detect features (or errors)
in programs, by finding correlated parts of the program [36,
28, 37, 6, 11, 12]. Abstract types could refine this informa-
tion, making it even more useful.

• Abstract types can partition the heap, providing useful infor-
mation to memory hierarchy optimizations. For example, a
group of objects that are likely to be connected in the heap
can be allocated on the same page or in the same arena. This
can reduce paging when accessing the data structure. A re-
lated optimization is to allocate related elements to locations

1. int totalCost(int miles, int price, int tax) {
2. int year = 2006;
3. if ((miles > 1000) && (year > 2000)) {
4. int shippingFee = 10;
5. return price + tax + shippingFee;
6. } else {
7. return price + tax;
8. }
9. }

Figure 1: A C procedure that usesint as the declared type for
variables of three abstract types: distance, money, and time.

that will not contend for cache lines, reducing thrashing for
elements likely to be accessed together.

• Abstract types are related to slices [34, 32], so they can be
used for many of the same purposes, such as debugging, test-
ing, parallelization, and program comprehension.

• Abstract types chosen to match the operators used in a later
analysis can improve efficiency by allowing the analysis to
consider only pairs of variables of the same abstract type, or
consider all variables of an abstract type together. A general
description of this technique is given in Section 2.3.

We have evaluated the results of abstract type inference both on
a program understanding task and when fed into a subsequent anal-
ysis; see Section 4.

The key idea of our analysis is to recover information that is im-
plicit in the program. The operations in the program encode the
programmer’s intent: values that interact in the program must be
intended to have the same abstract type (or else the interaction indi-
cates a bug), and values that never interact may be unrelated. More
concretely, an operation such asx+y indicates that the values of
x andy have the same abstract type. The notion of “interaction”
is parameterizable and is further described in Section 2.1.1. The
analysis ignores the underlying type system, including all casts,
and unifies the abstract types of two values when they interact. Ab-
stract types for variables are constructed from the abstract types of
values they held throughout execution (see Section 2.2).

Figure 2 shows our analysis inferring abstract types for the pro-
cedure of Figure 1 during one particular call. The> and+ operators
cause their operands to interact and thus unify their abstract types.
After line 5 completes, the values (and variables assigned to them)
are partitioned into 3 abstract types. Our analysis does not assign
the labels “distance”, “money”, and “time”; it merely partitions the
values and variables.

Our abstract type inference operates dynamically on values rather
than statically on variables (as in [25, 24]), permitting it to produce
precise1 results. We have not observed overfitting to be a problem
in practice. If desired, the information can be checked by a type
system or similar static analysis, and the combined dynamic–static
system is sound, so its results can be used wherever a static abstract
type inference’s could be.

We have produced two implementations of dynamic inference of
abstract types: one operates on compiled binaries (for Linux/x86)
of programs written in languages such as C and C++, and the other
works on compiled Java programs (bytecodes, also known as class
files). In our experiments, the results of the analysis are accurate
(close to the ideal types a developer would specify), aid humans in
program understanding, and improve the run time and results of a
follow-on client analysis.

1We say that an analysis is “precise” if it groups in an abstract type only variables that
could really interact in execution.

miles:
3000

price:
50

tax:
3

miles:
3000

price:
50

tax:
3

year:
2006

miles:
3000

price:
50

tax:
3

year:
2006

miles:
3000

price:
50

tax:
3

year:
2006

miles:
3000

price:
50

tax:
3

return value:
63

year:
2006

Distance Money Time

1000 2000

1000 2000

1.

2.

3.

4.

5. 1000 2000shippingFee:
10

shippingFee:
10

Figure 2: Our analysis inferring abstract types for the procedure
shown in Figure 1 during one call:totalCost(3000, 50, 3) .
Each line represents the values and their abstract types after the
execution of the corresponding line in the code. Values in the same
box belong to the same abstract type.

2. Dynamic inference of abstract types
This section presents a unification-based dynamic analysis for

partitioning variables into abstract types, based on observing the
interactions of the values they held during execution.

Abstract typesprovide a division of program variables or values
into sets of related quantities. For a given program, there are many
ways to make this distinction, and different partitions are useful
for different purposes. Our analysis is parameterizable to permit
computation of different varieties of abstract type. No analysis is
guaranteed to produce exactly what the programmer would intend
for a given purpose (that is unknowable and inherently subjective,
and the program may not perfectly express the programmer’s in-
tent), but our goal is to produce information about the program that
is sufficiently accurate to be used by people and by tools. Further-
more, the analysis does not give a meaningful name or specification
to each abstract type: it just groups values together based on inter-
actions and dataflow, then uses that information to group variables.

A valueis a concrete instance of an entity that a program operates
on, such as a particular dynamic instance of the number42 or the
string "foobar" . New values can be created via literals, memory
allocation, user or file inputs, or other operations. For example,
every timex+1 is executed, the value stored inx is reused, a new
value is created for 1, and the addition operator creates a new value.
By contrast,x=y creates no new values — it merely copies one.

Variables are containers for values, so a variable can hold many
distinct values during its lifetime. For example, in “x=3; y=3;
x=y; ” there are two values (both of which represent the same num-
ber), and at the end of execution both variables hold one of them.
However,x has held two distinct values during its lifetime. This is
similar to the way objects work — compare “x=new Object();
y=new Object(); x=y; ” — but we extend the notion to prim-
itives. Unlike objects, for primitives the programming language
provides no way to tell by looking at the program state whether
two instances of 3 are the same value, but a dynamic analysis can
track this information.

A variable can have different abstract types at different static
points in a program where it holds different values. Section 4.2
shows that this can be useful in understanding global variables.

Our dynamic abstract type inference works by observing value
interactions and dataflow, unifying the abstract types of values that
interacted (Section 2.1), and constructing abstract types for vari-
ables based on the abstract types of the values they held (Sec-
tion 2.2).

2.1 Tracking dataflow and value interactions
Our algorithm tracks the flow and interactions of values through-

out execution, partitioning values into disjoint sets. To accomplish

this, it maintains a tag for each value that represents the value’s
abstract type. A global union-find data structure calledvalue uf
groups the tags into disjoint sets calledinteraction sets; all values
in a set belong to the same abstract type. Only values of primitive
types (including pointers) get tags; structures, class objects, and ar-
rays are treated as collections of primitives. One tag in each set,
called theleader, represents the set when performing operations in
value uf .

Tags are created and propagated to reflect the dynamic dataflow
that occurs during execution. Every new value created during ex-
ecution receives a unique tag, which is initially placed in a new
singleton set withinvalue uf to denote that it represents a unique
abstract type.

As a value propagates (is copied) during execution, its tag al-
ways accompanies it, thus tracking dataflow. For instance, in an
assignmentx=y , when the value stored iny is copied intox , the
tag associated with the value is copied as well. Procedure argu-
ments and return values are treated in exactly the same way. This
propagation of tags is somewhat similar to the propagation of ab-
stract identifiers in a static dataflow analysis, but a key feature is
that it occurs only when dataflow actually occurs during execution.
In the terminology of static analysis, our technique is completely
context-, flow-, and path-sensitive.

2.1.1 Definitions of interaction
In addition to recording dataflow, our analysis classifies values

as having the same abstract type (by unifying the sets of their tags
in value uf) if they are used together (“interact”) in certain op-
erations. The notion of what operations qualify as interactions is
parameterizable, and we have implemented 4 definitions of inter-
action among primitive and reference values. We present them
in order from finest (produces many abstract types, each with few
members) to coarsest (produces few abstract types, each with many
members).

Dataflow - No binary operations are interactions. Thus, every
value belongs to a singleton set, which represents a unique
abstract type. This tracks dataflow because two variables
have the same abstract type if a single value flowed to both
of them.

Dataflow and comparisons- Two values that are operands to a
comparison operator (e.g.,< and==) interact, so their tags are
unified together in one interaction set withinvalue uf . The
result of the comparison is a boolean value that is unrelated to
the operands, so it receives a fresh tag representing a unique
abstract type.

Units - Addition, subtraction, and comparisons are interactions;
other operations, including multiplication and division, are
not. As a result, variables with the same abstract type could
be assigned the same scientific units.

Arithmetic - This is the default mode for our implementations,
as our experience suggests that it is easier for users to split
up sets that are too large than to combine sets that were not
recognized as related.

• Comparisons are interactions between operands.
• All arithmetic (+, - , * , / , %, etc.) and bitwise (&, | ,

etc.) operations are interactions between operands and
result, so all 3 values have the same abstract type.

• Shift operations (<<, >>, etc.) are interactions between
the quantity being shifted (left operand) and the result.
In practice, the shift amount (right operand) is usually
not closely related to the quantity being shifted.

In all modes, logical operators such as&&, || , and the ternary?:

operator do not produce interactions, because no close relationship
need exist between the operands, especially in C when operands
are often numbers or pointers instead of booleans.

2.1.2 Optimizations
Many optimizations to tracking value interactions are possible;

we mention a few that we have implemented to date:

Re-use of existing tags for new values:The expressionx+y
conceptually creates a new tag for the sum, then immedi-
ately unifies the interaction set of that tag with those of the
operands. However, there is no need to create a new tag: the
tool can simply reuse one of the operands’ tags.

Elimination of operand literal tags: When a literal appears as
an operand alongside a variable (e.g.,x+42), there is no point
in creating a new tag for it because that new tag will imme-
diately be unified (merged) into the interaction set of the tag
of the other operand.

Garbage collection of tags:In our Java implementation, the use
of weak pointers enables tags to be reclaimed when no longer
in use. In our binary implementation, a garbage collector
periodically scans the tags, permitting unclaimed tags to be
reused when new values are created.

Eager canonicalization: Tags can be replaced by their leaders
(canonical representatives) whenever tags are manipulated to
reduce the total number of non-garbage tags in use.

2.2 Inferring abstract types for variables
Our analysis infers abstract types for variables based on the in-

teraction sets of values: roughly speaking, variables will be in the
same abstract type if they held values from the same interaction
set. Our approach computes abstract types separately for variables
at certain static points in a program; we call each such location a
site(see Section 3).

This section describes two algorithms for constructing abstract
types, which give somewhat different results when the interaction
sets themselves change over time: the first algorithm is relatively
simple, while the second algorithm is more complex, but corre-
sponds to a more consistent definition of abstract types. Both algo-
rithms can be implemented efficiently, and we have not found the
difference between their results to be significant in our experiments.

For the first variable type inference algorithm, each site has an
associated union-find data structure representing a partition of the
variables at the site. Before execution, each variable is in its own
singleton set. Now, suppose thatx and y are two variables at a
particular site, and that on a particular execution they have the val-
uesvx andvy . The simple algorithm checks whethervx andvy

are in the same interaction set at that moment of execution, and
if so, merges (unifies) the variable sets containingx andy . After
execution, the abstract types are simply the sets in the union-find
structure. A potentially unsatisfying aspect of this algorithm is that
while value interactions that occur before the execution of a site
affect the variable abstract types, those that occur afterwards may
not, if the variable never again has values from that interaction set.

To avoid the asymmetry in the simple algorithm just described,
we developed a more complex algorithm whose definition of ab-
stract type does not depend on the order in which value interactions
occur. The key difference in the second algorithm is that rather than
creating abstract types grouping variables directly, it constructs ab-
stract types by first grouping value interaction sets, and then using
these groups to define sets of variables. The effect of this choice
on the algorithm’s results is that its abstract types always corre-
spond to unions of whole value interaction sets, rather than parts of
interaction sets. In other words, if a variablex had a valuevx at

Global union-find structure for value interaction sets
UnionFind<Tag> value uf

Per-site union-find structure grouping value interaction set
leaders for sets of values whose unions form abstract types
UnionFind<Tag> type uf
Per-site array picking out a set intype uf corresponding to all the
previously-observed values of a variable
Tag[] var tags

Update the abstract types for this site, based on an execution when
the variables had values whose interaction sets are given bynew tags
method site.update types(Tag[] new tags):

1. for each variable v:
2. Tag leader = value uf.find(var tags[v])

If var tags[v] is no longer the leader of its interaction set,
then its set has been merged with another set invalue uf

3. if leader != var tags[v]:
Merge corresponding sets intype uf and
maintain thatvar tags[v] is the leader

4. var tags[v] = type uf.union(leader, var tags[v])

If needed, create entry for new value intype uf
5. Tag new leader = value uf.find(new tags[v])
6. if new leader not in type uf:
7. type uf.make singleton(new leader)

Merge new tag with existing tags intype uf
8. var tags[v] = type uf.union(var tags[v], new leader)

Figure 3: Pseudocode for the propagation, occurring at each site ex-
ecution, that translates from value interaction sets to abstract types
for variables. See Section 2.2 for a detailed description.

one execution of a site, the variabley had a valuevy at a different
execution of the site, andvx andvy interacted, thenx andy will
be in the same abstract type, even if there was no single execution
at which the values ofx andy had interacted or would interact in
the future. To implement this approach, the second algorithm does
not use a union-find structure representing a partition of variables
at each site; instead, it uses a union-find structure representing a
partition of value interaction sets.

To be precise, the union-find structure maintains a partition of tag
values that at some point were leaders (canonical representatives)
of value interaction sets. Figure 3 gives a pseudocode implemen-
tation of the algorithm, in which the per-site union-find structure is
type uf . Such tags are grouped together either as the value inter-
action sets grow (if an interaction set merged to create a larger one,
the old and new leaders are grouped), or as variables take values
from different interaction sets on subsequent site executions (the
leaders of the previous and current sets are grouped). To maintain
the connection between value interaction sets and variables, the al-
gorithm also keeps track, for each variable, of the leader of the
interaction set of the most recently observed value of the variable
(in Figure 3, thevar tags array).

At each execution of a site, the algorithm first updates the repre-
sentative tag for each variable value seen on the previous execution,
to account for interaction set merges that have occurred between
site executions (lines 2–4), and then merges the sets containing the
representatives of the previous and current value interaction sets
(line 8), creating a new set for the current value if it does not yet
exist (lines 5–7). The algorithm’s results should also reflect in-
teractions that occur even after the final execution of a site, so it
performs a final iteration of propagating merges of interaction sets
(lines 2–4) for each site at the very end of execution. At the end of
execution, two variablesv1 andv2 at a site are in the same abstract
type if var tags[v1] and var tags[v2] are in the same set in
type uf .

2.3 Approximating analyses by abstract types
The abstract types computed using the algorithms above can of-

ten be used as approximations of another program analysis. This
section describes two general ways in which such approximations
are useful; Section 4.3 gives a real example.

The goal of an analysis can often be described as being to com-
pute some relationR that might hold between pairs of variables.
Two kinds of abstract type systems can allow such a relation to
be computed without considering each pair of variables indepen-
dently. First, call an abstract type system acoarseningof a relation
R if whenevera andb are related byR, they have the same ab-
stract type. Second, call an abstract type system acongruencefor
a relationR if whenevera anda′ have the same abstract type, and
b andb′ have the same abstract type,a is related tob by R if and
only if a′ is related tob′ by R. (In the special case whenR is it-
self an equivalence relation, these type systems define respectively
coarser and finer partitions of the variables than the one induced
by R.) Given a coarsening of a relationR, R can be computed
more efficiently by considering each abstract type separately: this
is still correct because no members of different types can be re-
lated. Given a congruence for a relationR, R can be computed
more efficiently by considering all the members of each abstract
type together: the results will be the same for all of them.

For instance, as part of correcting Y2K errors, one might be in-
terested in finding pairs of variables that represent the 4- and 2-digit
versions of the same year. In a dynamic analysis for this problem,
the relationR might hold between the variablesy4 andy2 after the
statementy4 = y2+c , if c had the value 1900. In this example our
algorithm operating in arithmetic mode could be used to compute a
coarsening of the relationR, because a pair of values that are com-
puted independently cannot represent the same year. Similarly, our
algorithm operating in dataflow mode could be used to compute a
congruence forR, since copying a value does not change what year
it represents.

3. Implementations
We have implemented two tools for performing dynamic infer-

ence of abstract types: DynCompB for binary-compiled executa-
bles written in languages such as C and C++, and DynCompJ for
JVM-compiled class files produced from languages such as Java.

3.1 Granularity of analysis
Our tools compute abstract types for variables at the entrances

and exits of procedures, because these are where humans and tools
commonly desire abstract type information; it would be easy to
choose other sites instead. At each entrance or exit site, the vari-
ables of interest include formal parameters, globals, and (for meth-
ods) fields of the current object.

For variables of more complex types, our tools addderived vari-
ablesto refer to the contents of larger data structures, in order to
provide richer information. For example, for an array referred to
by a pointerint *foo , the variablefoo represents the pointer it-
self and the derived variablefoo[] represents the contents of the
array. (Although there is only one derived variable for the contents
of an array, the interactions of values held by individual elements
are tracked separately to improve precision.) Similarly, for a C
struct or C++/Java object, there is one derived variable per field;
variables are derived recursively for arrays, structures, or objects
nested inside of structures or objects. For example, for methods in
a Person class,this.age is a derived variable referring to a field
of the current object.

The algorithm of Section 2 is not limited to the granularity of
analysis described above: it could be used equally well with ab-

stract types computed more or less frequently, or with more or
fewer derived variables. We chose the granularity described above
as the one most often appropriate for both program understanding
tasks and assisting other automated tools.

3.2 Binary implementation
DynCompB uses Valgrind [23] to rewrite a program binary at

run time to insert instrumentation code that performs the analy-
sis described in Section 2. Because Valgrind operates on arbi-
trary Linux/x86 program binaries in the ELF format, DynCompB
could be extended to any language that can compile into this form,
including all languages thatgcc supports: C, C++, Objective-C,
Ada, Fortran, and Java. DynCompB currently supports C and C++,
which are the languages for which demand has been greatest.

The value tracking algorithm (Section 2.1) is performed purely
at the binary level, and operates on all code, including libraries.
Instrumentation code maintains a 32-bit integer for every byte of
memory and every register, to represent the tag of the value cur-
rently stored in that location. For every machine instruction that
copies values from or to memory or registers, instrumentation code
copies the tags of the copied bytes. For every machine instruc-
tion that qualifies as an interaction, instrumentation code merges
the sets of the operands’ tags invalue uf . Values that interact
with the stack pointer are treated specially: unrelated pointer val-
ues (such as local variable addresses) are not counted as related
merely because they are calculated as offsets fromESPor EBP.

New tags are created in response to two events: dynamic occur-
rences of literals, and program input. For example, each time the
instructions corresponding to the C codey=42 are executed, a new
tag is assigned to the memory location wherey is located. Initial-
ization of memory, such as the zero-filling performed bycalloc , is
another example of new tags created from literals. When a system
call such asread stores new data in the program’s address space,
these bytes also receive fresh tags.

The conversion between value interactions and variable abstract
types (Section 2.2) is implemented by instrumenting the binary to,
at each site, pause normal execution, use debugging information
to locate variables, read the tags of their values from memory into
new tags , and execute the algorithm of Figure 3. Because most
variables hold values that span more than one byte, when those
values are read, the interaction sets of tags for all the bytes are
merged invalue uf to denote that those bytes all represent a single
value.

3.3 Java implementation
DynCompJ, our implementation of dynamic abstract type infer-

ence for Java, transforms class files to track value interactions. It
supports any class file that can run on a version 1.5 JVM.

Java values are objects or primitives. A map (tag-map) asso-
ciates each object with its entry in the global union-find data struc-
ture value uf . Whenever an operation (==, !=) is performed on
two objects, instrumentation code merges their tags invalue uf .

By contrast, primitives cannot be uniquely identified by their
value (e.g., it is not possible to tell whether two instances of 3 rep-
resent the same value). A primitive value thus requires a unique
external tag to represent it invalue uf . Each time a value is ma-
nipulated (stored in a variable, pushed on the stack, etc.), its tag
must be carried with it. The basic approach is to provide a tag stor-
age location for each place that a value can be stored.

Java stack - A global tag stackparallels the normal Java stack.
Each instruction that manipulates primitive values on the Java
stack also updates the tag stack.

Fields - Each object with primitive member fields has an associ-
ated tag array that contains the tag for each primitive in the
object. A map (field-map) from each object to its tag ar-
ray is maintained. A single global tag array handles all static
primitive fields in a similar manner.

Locals - Similarly to objects, each active stack frame has atag
frame, an array of tags for primitive local variables. Instru-
mentation code creates the tag frame when the method is en-
tered. Parameter tags are stored in the tag frame in the same
manner as locals.

Classes in the JDK need to be instrumented so that variables that
interact in the JDK are properly tracked. Our technique statically
instruments the JDK to create a second (instrumented) copy of each
method [29]. The instrumented methods are used by the user code,
and the original methods are used by the instrumentation code. The
fields in some core classes (String, Class, Object) cannot be modi-
fied, added, or deleted since their layout is known to the JVM. Our
analysis does not require any changes to the fields of a class.

4. Experiments
We have evaluated our abstract type inference tools in several

ways. First, we carefully analyzed a small program by hand, to
verify that the results were accurate (Section 4.1). Second, we per-
formed a case study of two programmers who were trying to under-
stand and modify unfamiliar programs; we observed whether the
analysis results assisted the programmers (Section 4.2). Third, we
measured how much the inferred types improved the results and ef-
ficiency of a follow-on analysis (Section 4.3). Fourth, we compared
the results of static abstract type inference to our dynamic abstract
type inference (Section 4.4). Fifth, we measured the effect of test
suites on the dynamic abstract type inference results (Section 4.5).

Our experiments use the following subject programs. All line
counts are non-comment, non-blank. We ran each program once,
on a single input that is also noted below.

• wordplay (C, 740 LOC): anagram generator, using a 38KB
dictionary

• RNAfold (C, 1804 LOC, of which 706 LOC are infold.c):
secondary structure predictor, folding a length-100 RNA se-
quence, only inferring types for variables withinfold.c

• SVM-Light (C, 5834 LOC): support vector machine learning
tool, training an SVM on a 474-line input

• bzip2 (C, 5128 LOC): file compressor, running on a 50KB
text file of gcc source code

• flex (C, 11,977 LOC): lexical analyzer generator, running
on the lexical grammar for C

• perl (C, 104,528 LOC, of which 16,976 are the implemen-
tations of non-hot opcodes): scripting language implemen-
tation, interpreting a 664-line sorting program from its test
suite

• bzip2 (Java, 1275 LOC): file compressor, running on a
4KB source file

• javac (Java, 39,594 LOC, of which 12,506 are in thecomp
package): Java compiler, compiling itscomp package

4.1 Accuracy
In order to assess the accuracy of our tools, we performed a care-

ful manual analysis of all 21 global variables of thewordplay ana-
gram generator program, then ran DynCompB to compare the re-
sults. An exhaustive manual examination is feasible forwordplay
because it is small (740 lines), but would not be for larger pro-
grams. Indeed, the difficulty of such an analysis is a motivation

Variables Declarations and comments from source code
1 keymem char *keymem; /* Memory block for keys */

largestlet char largestlet;
words2mem char *words2mem; /* Memory block for

candidate words */
*words2 char **words2; /* Candidate word index

(pointers to the words) */
*words2ptrs char **words2ptrs; /* For copying

the word indexes */
*wordss char **wordss; /* Keys */

2 ncount int ncount; /* Num. of candidate words */
*lindx1 int *lindx1;
*lindx2 int *lindx2;
*findx1 int findx1[26];
*findx2 int findx2[26];

3 longestlength int longestlength; /* Length of longest
word in words2 array */

max depth int max depth;
*wordsn int *wordsn; /* Lengths of each word

in words2 */
4 *wordmasks int *wordmasks; /* Mask of which letters

are contained in each word */
5 rec anag count int rec anag count; /* For recursive alg,

keeps track of num. of anagrams found */
6 adjacentdups int adjacentdups;
7 specfirstword int specfirstword;
8 maxdepthspec int maxdepthspec;
9 silent int silent;

10 vowelcheck int vowelcheck;

Figure 4: The 10 abstract types for the 21 global variables in
wordplay . Each abstract type contains one or more variables. A
pointer variable stands for any element of an array, not just the first
element. DynCompB computed 11 abstract types (it erroneously
separated*wordsn from the other variables in type 3), and Lackwit
computed 7 abstract types (it erroneously grouped the 15 variables
of types 1–4 into a single abstract type).

for our tools. The manual analysis applied human understanding to
every use of the global variables, all variables with which they in-
teracted, all possible aliasing relationships, source code comments,
etc. Figure 4 shows the results.

Type 1 represents the abstract type of “words” in the program.
Variable largestlet represents the largest letter found in some
word, and although it is of typechar instead ofchar* , code in-
spection confirms that it has the same abstract type as the other
variables in the set.

Type 2 contains variables related to indices into arrays of words.
These code comments reveal how the programmer intended to use
these variables:

/* Create indexes into words2 array by word length.
Words of length i will be in elements lindx1[i]
through lindx2[i] of array words2.

...
/* Create indexes into wordss array by first letter.

Words with first letter "A" will be will be in
elements findx1[i] through findx2[i] of array wordss.

*lindx1 and *lindx2 are indices into the arraywords2 , and
*findx1 and *findx2 are indices into the arraywordss . Thus,
all four indices belong to the same abstract type since the contents
of thewords2 andwordss arrays both belong to the same abstract
type.ncount interacts with*lindx2 to produce these indices.

Type 3 contains variables that test whether the base case of a
recursive function has been reached, in this line of code:
if ((max depth - *level) * longestlength < strlen(s))

Type 4 contains the contents of thewordmasks array, which
holds “mask[s] of which letters are contained in each word”.

The remaining variables belong in singleton types (5–10); their
types are conceptually distinct from all other global variables.

We ranwordplay with DynCompB on an 18-letter string to ana-
gram and a 38KB dictionary, achieving 76% coverage of the exe-
cutable lines. DynCompB places the variables in 11 abstract types,
compared to the 10 abstract types of the manual analysis. The only
difference is that DynCompB splits type 3 of Figure 4 into two ab-
stract types, one containinglongestlength andmax depth , and
the other containing*wordsn .

Comments in the code indicate that the variables*wordsn and
longestlength should belong to the same abstract type repre-
senting “length of word inwords2 array”. DynCompB fails to
recognize this relationship because their values never actually in-
teract. longestlength is initialized with return values of inde-
pendent calls tostrlen() , not from cached elements ofwordsn .
No analysis — static or dynamic — that infers abstract types via
value interactions could notice this relationship.

We performed a similar hand inspection of thebzip2 andflex
programs; these analyses were not exhaustive, due to the size and
complexity of the programs. However, for each pair of variables
that we examined, we were able to reasonably determine that Dyn-
CompB’s decision (whether putting the variables in the same type
or in different types) was the right one.

On these larger programs, we did notice the effect of the lim-
ited coverage of our test cases. Inbzip2 andflex , several error-
handling procedures were rarely or never executed. We did not
notice ill results of overfitting for procedures that were executed
more than ten times.

4.2 User studies
Two MIT researchers (who are not members of our research

group) were struggling with reverse engineering problems. They
volunteered to try using DynCompB to assist them with their C
programming.

4.2.1 RNAfold
The first researcher is a computational biologist who had recently

refactored RNAfold, an 1804-line RNA folding program [14]. The
refactoring converted 55int variables of the abstract type “en-
ergy” into typedouble . The program has hundreds of non-energy-
relatedint variables. His hand analysis had statically emulated
the operation of DynCompB, building up sets of related variables
by tracing assignments, function calls, and binary operators in the
source code. It took him 16 hours of work, done over a week, to
find all the energy variables. He described the process as tedious
and error-prone; two iterations were required before he found ev-
erything.

We ran DynCompB on RNAfold with a test case of a single 100
base pair RNA sequence extracted from a public database (achiev-
ing 73% statement coverage offold.c , where the algorithm re-
sides). We showed the inferred sets of abstract types to the re-
searcher and observed his reactions and comments. One 60-element
set contained all of the energy variables the researcher had found.
The set also contained 5 index variables, which had interacted with
energy variables during (unnecessarily) complex initialization code.
Although the researcher’s notion of abstract types did not perfectly
match the tool’s definition, this minor mismatch was no hindrance:
the researcher easily and quickly recognized and filtered out the
few non-energy variables.

The DynCompB results gave the researcher increased confidence
in his refactoring. He estimated that instead of spending 16 hours
of manual analysis, he could have set up the test, run the tool, ob-
served the results, and filtered out inaccuracies in 1 or 2 hours.

C programs Java progs Aver-
Types word rna svm bzip2 flex perlbzip2 javac age
Represent. 23 42 46 37 184 263 56 21.4 84
Declared 6.5 20 14 8.8 88 50 15 21.0 28
Abstract 3.6 15 6.5 1.9 23 5.3 12 1.4 8.6

Figure 5: Average number of variables in a type for each site. Sec-
tion 4.3.1 describes the varieties of type. Abstract types are com-
puted by DynCompB and DynCompJ.

4.2.2 SVM-Light
The second researcher was trying to understand SVM-Light, a

5834-line support vector machine implementation [15]. His goal
was to create a hardware implementation. He was familiar with
SVM algorithms but unsure of how SVM-Light implemented a par-
ticular algorithm.

We ran SVM-Light once, on a 474-line file from LIBSVM [4]
(achieving 37% statement coverage). The DynCompB output, the
variable names, and the source code confirmed his intuitions about
how the mathematical variables in the SVM algorithm mapped into
program variables in code. For example, at one particular site, there
was a perfect correspondence between his notion of abstract types
and what the tool inferred, for variables that dealt with calculating
error bounds to determine whether to shift the SVM up to higher
dimensions.

The researcher noted that the variablebuffer appeared in large
sets at many sites, and he initially suspected imprecision in our
tool. After double-checking the code, he saw thatbuffer was used
pervasively to hold temporary calculation results for many different
operations. He had thought thatbuffer was confined to a few core
operations, so he learned a new fact about the program in addition
to verifying what he already knew.

4.3 Dynamic invariant detection
Section 4.2 evaluated whether abstract types are useful to pro-

grammers. This section evaluates whether abstract types can im-
prove the results of a follow-on analysis, making it run faster or
produce better output.

As described in Section 1, abstract types are applicable to many
analyses; for concreteness, our evaluation uses the Daikon dynamic
invariant detection system [7]. Given a trace of the run-time values
computed by a program, Daikon performs machine learning, seek-
ing relationships among these values.

Finer types than those that appear in the program source can aid
Daikon in two ways. First, they can improve run-time performance,
because there is no need to hypothesize or check properties over
variables of different abstract types. Second, and more importantly,
they can improve output quality by reducing irrelevant output (false
positives). Daikon has been applied to dozens of problems in soft-
ware engineering and other fields [26], so improving it is a practical
and realistic problem.

In the terminology of Section 2.3, DynComp (that is, DynCompB
or DynCompJ) computes a coarsening of Daikon’s invariants. This
does not just optimize Daikon’s performance; it also changes its be-
havior to remove undesirable invariants. We did not use DynComp
to compute a congruence, because Daikon already implements an
optimization [26] based on the same principle.

4.3.1 Methodology
Figure 5 shows the number of variables that share a type in our

subject programs, averaged over all sites (procedure entrances and
exits). These averages do not include C pointer variables, because

abstract types of pointers (as opposed to their contents) are rarely
interesting.

Representation typesgroup all variables into four types based on
their machine representation: integer, floating-point, string,
and Java object references.

Declared types group variables by their declared types. Amongst
primitives, this distinguishes each primitive representation
(such as float and double or signed and unsigned) as well
as any type aliases defined usingtypedef . Similarly, all
classes are distinguished. This grouping may not be correct.
For example, relationships between afloat and adouble
may be interesting. Also, superclasses and their subclasses
(such asNumber andInteger) and interfaces and their im-
plementors (such asList andArrayList) may have inter-
esting relationships. Daikon can use this to improve run-time
performance in the absence of more accurate information.

Abstract types use the output of our dynamic analysis. Figure 5
indicates that the abstract types are significantly finer-grained
than the declared types.

We measure the effect of the type declarations on the size of
Daikon’s output (the number of hypothesized invariants), and also
on Daikon’s run time and maximum memory size. For implemen-
tation simplicity, Daikon assumes that the type information that it
is given is transitive; that is, if variablesa andb have the same ab-
stract type, and so dob andc , then variablesa andc have the same
abstract type. This is not necessarily true in our dynamic context,
but our tools performed this merging (which reduces precision) be-
fore presenting the information to Daikon. DynComp’s run time
was approximately the same as Daikon’s, so it is a reasonable pre-
processing step.

4.3.2 Results
Figure 6 shows the results. Daikon ran faster, used less memory,

and produced fewer invariants when using abstract types, compared
to its default of using representation types.

Compared to the declared type heuristic, abstract types produced
substantially fewer invariants (even though, as explained above,
declared types caused Daikon to miss important properties), and
Daikon generally ran faster and in less memory. The key exception
is Perl, where one of Daikon’s optimizations, which is currently
applied to one type at a time, was more effective when applied to
more variables at once. We plan to generalize this optimization,
which should make using abstract types no slower than using de-
clared types, while still producing substantially better output.

For programs where very few invariants were computed (such
as wordplay, RNAfold, and others), memory size is dominated by
the JVM, the Daikon program itself, and the data being processed;
thus, the choice of types has little end-to-end impact on run time
and overall memory usage. In any event, optimizations are most
important for large runs of Daikon.

In some cases, the use of abstract types improves run time and
memory use less than it improves the number of invariants. This is
the result of optimizations in Daikon, which is able to symbolically
represent very large numbers of properties in a small amount of
memory.

Representation types were sometimes nearly as good as declared
types. When most of a program’s variables are declared asint ,
there is little difference between the two, except that declared types
treat pointers differently, and Daikon’s optimizations already work
well with pointers.

Daikon
Treatment time memory # invariants

wordplay
Representation types10 27 1,081,934
Declared types 9.5 26 830,676
Lackwit 8.7 25 48,877
Abstract types 8.5 25 26,385

RNAfold
Representation types170 140 292,603
Declared types 170 140 285,031
Lackwit 170 140 99,732
Abstract types 150 140 81,322

SVM-Light
Representation types150 80 1,984,402
Declared types 150 80 1,970,681
Lackwit 140 70 544,386
Abstract types 140 70 565,215

bzip2
Representation types130 90 28,608,435
Declared types 120 80 13,316,420
Lackwit 110 70 600,834
Abstract types 110 70 392,180

flex
Representation types930 380 1,410,893,630
Declared types 860 340 1,401,545,090
Lackwit 520 150 37,720,499
Abstract types 460 110 1,801,367

Perl non-hot opcode implementations
Representation types1600 1800 4,157,673,644
Declared types 770 920 585,066,116
Abstract types 1000 950 8,849,326

bzip2 (Java)
Representation types8200 1800 1,659,782,660
Declared types 8200 1800 1,283,375,117
Abstract types 970 480 34,102,566

javaccomp package
Representation types850 1100 23,751,142
Declared types 460 490 12,726,250
Abstract types 360 440 5,529,947

Figure 6: Effect of types on a follow-on analysis, dynamic invari-
ant detection. All tests were run on a P4 3.6GHz PC with 3GB
RAM. Run time is in seconds, and memory size is in MB. The “#
invariants” column includes redundant properties, most of which
the Daikon tool suppresses upon output.

4.3.3 Hand examination of differences
In order to verify that the invariants eliminated by the abstract

type information were in fact spurious, we exhaustively examined
all the differences between Daikon’s output using declared types
and abstract types for all of SVM-Light and RNAfold, and for a
portion of javac . Less detailed examinations of other programs
yielded similar results.

For SVM-Light, we performed the hand evaluation together with
the researcher in the user study of Section 4.2.2. He confirmed
that all but one eliminated invariant were spurious, because they all
falsely related variables of different abstract types. There were sev-
eral instances of Daikon falsely relating two integer variables when
run with abstract types from DynCompB, one of which was used

Abstract C programs
types wordplay rna svm bzip2 flex perl
Static 9.1 30 14 2.2 46 n/a
Dynamic 3.6 15 6.5 1.9 23 5.3

Figure 7: Average number of variables in an abstract type, as com-
puted by the static tool Lackwit and the dynamic tool DynCompB
(those numbers are replicated from Figure 5). Lackwit was unable
to processperl .

as an enumerated value but declared as anint and assigned small
constant symbolic values defined in#define statements. For the
one invariant that he said should not have been eliminated, the two
variables had a control-flow-based (rather than a dataflow-based)
relationship, so our tool was not able to place them into the same
abstract type.

For RNAfold, almost all eliminated invariants were spurious.
We also carefully examined the 38 object invariants that were

eliminated by abstract type information in theAnnotate class of
javac . 20 of these indicated that two boolean variables (each of
which represented command line options) were equal. With one
exception, the command-line options were unrelated and the in-
variants were spurious. The other 18 invariants indicated that two
object references of the same type were not equal. In 15, this in-
formation was clearly uninteresting. For example, two of the vari-
ables represented different lexical elements that it would make no
sense to compare. The remaining 3 invariants were over variables
that keep track of whether warnings were found in various classes.
These variables do not hold values that interact, so it is unlikely
that these invariants would be interesting.

4.4 Comparison to static analysis
Abstract type inference can be performed statically as well as

dynamically, and the two approaches have different tradeoffs. This
section repeats the evaluation of Sections 4.1, 4.2, and 4.3, using a
static abstract type inference tool, Lackwit (see Section 5.1), whose
goals and output format are the same as those of DynCompB. (A
similar static tool for Java, named Ajax [24], exists but does not
scale to any of our subject programs.)

4.4.1 Accuracy
Figure 7 shows the average size of an abstract type as computed

by the static tool Lackwit, as compared to those computed by our
dynamic tool DynCompB. Sometimes Lackwit groups more vari-
ables into an abstract type on average than the average number of
variables according to declared types (compare with Figure 5). This
is possible because neither Lackwit nor DynCompB take declared
types into account, so they might put anint variable and ashort
variable into the same abstract type if they held values that interact.
These numbers alone cannot indicate correctness, so we performed
a source code inspection on several programs to determine whether
variables that the tools assigned to the same type actually corre-
spond to the same programmer-intended abstract type.

Our hand examination ofbzip2 and flex focused on the dif-
ferences in the Lackwit and DynCompB output, which we hoped
would indicate the strengths and weaknesses of the static and dy-
namic approaches. Typically the DynCompB results were finer and
were correct, so far as we could tell.

As in Section 4.1, we carefully examined thewordplay results.
Lackwit assigns the last 6 variables of Figure 4 to singleton types
(types 5–10), just like DynCompB and our hand analysis. How-
ever, Lackwit mistakenly assigns the first 15 global variables to

a single abstract type. Lackwit is unable to make any distinction
among them because of its conservative assumptions about runtime
behavior. As one example, consider why it merges types 1 and 3.
wordplay is invoked from the command line via:

wordplay -d<depth> <word> -f <word list file>

In C, command-line arguments are passed into the program within
the argv string array. The static analysis does not distinguish the
elements of an array, but gives them all the same abstract type.
wordplay assigns the numeric value of the<depth> argument
to max depth (Type 3), and the<word> argument interacts with
the word variables in Type 1. Thus, Lackwit merges types 1 and
3. Other conservative approximations cause Lackwit to spuriously
group other variables together into one large set.

By comparison, the hand analysis assigns these 15 global vari-
ables to four distinct abstract types (types 1–4), and DynCompB
assigns them to five distinct abstract types.

4.4.2 User studies
By inspecting the abstract types produced by DynCompB for

RNAfold, the researcher saw that one particular set contained all
the energy variables plus 5 variables of other abstract types (see
Section 4.2.1). Lackwit grouped 10 extraneous variables into that
same type in addition to the variables that DynCompB placed there,
thus making the results strictly worse.

Hand-inspection of the abstract types produced by Lackwit for
SVM-Light revealed no significant differences from the results of
DynCompB.

4.4.3 Dynamic invariant detection
We compared Daikon’s output using the types produced by Lack-

wit with the types produced by DynCompB for several examples.
We exhaustively reviewed the differences for RNAfold and SVM-
Light and noted mixed results: there were some cases where Dyn-
CompB produced abstract types that more closely mimicked the
researcher’s notion, and others where Lackwit did. We believe that
a more exhaustive or longer test would have been able to improve
the results of DynCompB.

4.5 Effect of test suites on results
The results of a dynamic analysis are inherently dependent on

the executions of the program being analyzed. Section 4.4 indi-
cated that even for very modest test suites, dynamic abstract type
inference produces results that are as good as, or better than, a static
analysis. Supplying additional executions to the dynamic analy-
sis could make the results even better, though a conservative static
analysis would be a bound for the dynamic results. This section
briefly considers the effect of program executions on our dynamic
analysis.

Figure 8 plots the average size of abstract types computed by
DynCompJ, analyzingjavac compiling files in itscomp package.
For example, whenjavac compiled a 12-line file, DynCompJ pro-
duced abstract types containing 1.33 elements on average. The
largest file in thecomp package is 3049 lines long (yielding an av-
erage set size of 1.43). The last two points on the graph represent
compiling the entirecomp package at once (12,506 lines of code,
set size: 1.44), and compiling all of the javac source code (39,594
lines, set size: 1.46). Even quite a modest test achieves close to the
results of compiling all of javac.

5. Related work
This section gives additional details about the previous static ap-

proaches to abstract type inference, and also compares the present

 1

 1.1

 1.2

 1.3

 1.4

 1.5

0K 5K 10K 15K 20K 25K 30K 35K 40K

av
er

ag
e

se
t s

iz
e

lines of code in input files

Abstract types versus input size

Figure 8: Size of abstract types computed for thejavac program,
plotted against the size of the file(s) being compiled.

work to more distantly-related research in type inference (including
of unit types), points-to analysis, and slicing.

5.1 Static abstract type inference
The most closely-related projects are Lackwit [25] and Ajax [24],

which perform a static analysis with a similar purpose as our dy-
namic one. Though they can be effective for small programs, and
their algorithms are theoretically scalable to quite large programs,
these tools suffer from some limitations of precision that are almost
impossible to avoid in a static analysis.

Ajax is a more flexible framework than Lackwit, but we consider
both because Lackwit works only with C programs, and Ajax only
with Java. Their key implementation technique is to summarize
each procedure with a polymorphic type. A type system with para-
metric polymorphism allows types to contain type variables (rep-
resented by Greek letters) that can be consistently replaced with
another type. For instance, a function that returns the first element
of a list might have a type “α list → α”, representing the fact that
it can be applied to a list of integers, returning an integer (whenα
is replaced byint), or to a list of booleans to return a boolean, and
so on. Lackwit and Ajax effectively devise new type systems for C
and Java that are distinct from the usual ones: they reflect some of
the same data structure, but they allow general polymorphism as in
ML, and type constructors likeint can be subscripted by tag vari-
ables (int α). Inferring abstract types then reduces to giving a type
to each function; because the type is polymorphic, different uses of
the function need not use values of the same abstract type.

For instance, if a function uses two integer arguments together in
an operation, the parameters would both get the typeint α (where
α is a variable):

void f(int a, int b, int c) { a + b; }
// Type: (int α, int α, int β) -> void
....
f(x, y, 5); // x, y both of type int µ

....
f(z, w, 7); // z, w both of type int ψ

At each site where the function is called, its argument types must
have the same tags (bothx andy are of typeint µ), but there is no
constraint between different calls (int µ andint ψ can be distinct).

Lackwit and Ajax construct these types using the Hindley-Milner
type inference algorithm or a generalization [20, 24]. Lackwit’s al-
gorithm starts by assigning unique type variables to program vari-
ables, and then merges them by collecting equality constraints from
the program and matching the structure of types in a process called
“unification”. Though the theoretical worst-case running time of

the algorithm is superpolynomial, this worst case does not occur in
practice: the algorithm’s running time is close to linear in the pro-
gram size. Unfortunately, the algorithmic scalability of Lackwit
and Ajax does not suffice to make the real tools applicable to large
programs. In our experience, Lackwit itself runs fairly quickly,
but querying its database to extract results is very slow when sets
are large. Ajax fails on many moderate-sized programs, and its
operation is significantly slowed by the need to re-analyze large
parts of the Java standard libraries. Therefore, we were unable to
fairly compare the performance of Lackwit and Ajax to that of Dyn-
CompB and DynCompJ.

Lackwit and Ajax’s polymorphic types improve their precision
by providing a form of context sensitivity: the arguments to a pro-
cedure need not have the same abstract type at every call site. An-
other effect of this approach is that the abstract types that Lackwit
and Ajax compute for a procedure are based on itsimplementation,
but are independent of the way in which the procedure isusedby
its callers.

By contrast, the abstract types computed by our algorithm re-
flect all of the values passed to a procedure. Lackwit and Ajax are
flow-insensitive, presuming that a variable has a single abstract type
throughout its scope; our algorithm avoids this limitation by track-
ing values individually. One might imagine using a flow-sensitive
static analysis, or making other changes, but many of the limita-
tions of Lackwit observed above would be shared by just about any
static analysis. For instance, in thewordplay example discussed
in Section 4.4.1, Lackwit unifies global variables that should have
different abstract types into the same type because they are initial-
ized using elements of the argument arrayargv . It is rare for a
static analysis to even give different treatment to elements of an ar-
ray based on their index; we know of no static analysis that would
distinguish between, say, “array elements for which the preceding
element was the string"-d" ” and “array elements for which the
preceding element was the string"-f" ”.

5.2 Other type inference
Other kinds of type inference can also be performed either stat-

ically or dynamically. Lackwit and Ajax are based on techniques
such as Hindley-Milner type-inference [20] that have been exten-
sively studied in connection with statically-typed functional lan-
guages such as ML [21]. Types can also be statically inferred for
languages that have only dynamic types, such as Scheme [10] and
Smalltalk [1, 30]; the problem is practically much more difficult in
this case. Dynamic approaches to type inference have been tried
less frequently, but are relatively lightweight, and can be effective
in contexts like reverse engineering when the results are further
modified by a developer [27].

5.3 Units analysis
Abstract types are intuitively similar to units of measurement. A

unit, like an abstract type, is an additional identity that can be as-
sociated with a number, and which gives information about what
other values can sensibly be operated on together with a value.
Also like abstract types, units are poorly supported by existing lan-
guages, and can be inferred from a program’s operations. “Unit
types” [16, 3] might be considered a variant of abstract type, but
they have an additional algebraic structure not present in the ab-
stract type systems considered so far. For instance, the unit type of
the product of two quantities does not have the unit type of either
factor; instead, it has a product unit type. Unit types can be inferred
by extending abstract type inference with algebraic constraint solv-
ing; this can be done either dynamically or statically. The “units”
mode of DynComp computes an approximation to physical unit

types: if DynComp in this mode puts two variables in the same
abstract type, they must have the same units, but several different
abstract types might represent variables with one set of units, if
those variables do not interact directly.

Erwig and Burnett [9] perform an analysis on spreadsheets that
they refer to as “unit inference,” but like our analysis they do not
model the algebraic properties of units. Instead, their nonstandard
type system represents a multidimensional hierarchical classifica-
tion of entities, and requires that values represent complete levels
of the hierarchy: for instance, adding apples and oranges is illegal
if bananas also exist. They also give an inference algorithm, but
it operates primarily from spreadsheet layout and column headings
rather than operations.

5.4 Points-to analysis
Abstract type inference is particularly important for variables of

primitive types such as integers, whose types in the original pro-
gram rarely give information about their meaning. Though abstract
type inference also groups pointer (or reference) variables accord-
ing to the dataflow between them, and could easily be extended to
group pointers with their referents (treating the dereference oper-
ation as another kind of interaction), it is usually more useful to
distinguish pointers according to what they point to. This exten-
sion gives the problem of points-to or aliasing analysis, which an-
swers questions of the form “what couldp point to?” or “couldp
andq ever point to the same location?”. Points-to analysis can be
performed dynamically [22], and this is in some ways easier than
dynamic abstract type inference because no tags are necessary: the
numeric value of a pointer uniquely identifies what it is pointing at.

However, points-to analysis has been studied more extensively
as a problem for static analysis. Abstract type inference is one of
many problems that are hard to solve statically without accurate in-
formation about pointers, since some abstract type must be given
to the value produced by a pointer dereference. Lackwit and Ajax’s
assignment of polymorphic types to references effectively repre-
sents a kind of pointer analysis. Pointer analysis has been studied
extensively, but finding the best trade-off between precision and
performance for a particular problem is still an area of active re-
search [5, 35]. Many points-to analyses could be converted into
abstract type inference algorithms with similar performance and
scalability characteristics by adding special-case treatment of oper-
ators on primitive types.

The well-known almost-linear-time points-to analysis of Steens-
gaard [31] has an additional connection to our algorithm in its use
of an efficient union-find data structure. Like our analysis, Steens-
gaard’s algorithm uses a union-find structure to represent a partition
of program variables, but beyond that their uses are rather different.
In our algorithm, the goal is to compute an undirected (symmetric)
and transitive relation, and the union-find structure represents the
equivalence classes of the relation. In Steensgaard’s algorithm, the
goal is to compute a directed relation, points-to, that is not transi-
tive, and the union-find structure is used to partition the domain of
the relation so that an over-approximation to it can be represented
in linear space. Steensgaard’s algorithm is more closely related to
the analysis that Lackwit and Ajax perform: like them it was in-
spired by unification-based type inference.

5.5 Slicing
Our dynamic abstract type inference relates variables that are

connected by dataflow and by co-occurrence in primitive opera-
tions. Those portions of a program that are connected by dataflow
and control dependence can be queried using the technique of slic-
ing; a backward slice of a particular statement or expression indi-

cates all the other statements or expressions whose computation can
affect the given one. Static slicing approximates this relation, and
dynamic slicing [2, 18, 33] computes it exactly for a given compu-
tation. In the general case, dynamic slicing amounts to maintaining
a full execution trace of a program, and much dynamic slicing re-
search focuses on how to collect and maintain this trace information
efficiently. Our analysis considers similar issues with respect to
collection, but pre-computes the result for any abstract type query
in the compact form of disjoint variable sets. From a program slice,
one can construct an abstract type consisting of the variables men-
tioned in the slice, and conversely the statements that use variables
of a given abstract type form a slice. Under this correspondence,
our abstract types correspond to slices that ignore control depen-
dencies.

6. Conclusion
Abstract types are an automatically-derived representation of the

interactions among a program’s variables and values. Previous
work has shown that they can be approximated by static analysis;
we have introduced the first dynamic analysis that computes them
precisely for a given set of program tests. Our implementations
scale to sizeable programs, and only limited testing is required to
construct usefully-accurate abstract types. In our experiments, the
abstract types helped programmers to better understand their code,
and they also improved the performance and results of a follow-on
analysis tool.

Acknowledgments
Robert O’Callahan implemented Lackwit and Ajax, and discussed dynamic
abstract type inference with us. Charles O’Donnell and Rodric Rabbah eval-
uated our tools. This research was supported by DARPA, EDG, NASA,
and NSF.

References
[1] O. Agesen. The cartesian product algorithm: Simple and precise type

inference of parametric polymorphism. InECOOP, pages 2–26, Aug.
1996.

[2] H. Agrawal and J. R. Horgan. Dynamic program slicing. InPLDI,
pages 246–256, White Plains, NY, June 20–22, 1990.

[3] E. Allen, D. Chase, V. Luchangco, J.-W. Maessen, and G. L. Steele
Jr. Object-oriented units of measurement. InOOPSLA, pages
384–403, Oct. 2004.

[4] C.-C. Chang and C.-J. Lin.LIBSVM: a library for support vector
machines, 2001. Software available at
http://www.csie.ntu.edu.tw/˜cjlin/libsvm .

[5] M. Das, B. Liblit, M. Fähndrich, and J. Rehof. Estimating the impact
of scalable pointer analysis on optimization. InSAS, pages 260–278,
July 2001.

[6] T. Eisenbarth, R. Koschke, and D. Simon. Locating features in source
code.Computer, 29(3):210–224, Mar. 2003.

[7] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to support
program evolution.IEEE TSE, 27(2):99–123, Feb. 2001.

[8] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin. Quickly
detecting relevant program invariants. InICSE, pages 449–458, June
2000.

[9] M. Erwig and M. M. Burnett. Adding apples and oranges. InPADL,
pages 171–191, Jan. 2002.

[10] C. Flanagan, M. Flatt, S. Krishnamurthi, S. Weirich, and
M. Felleisen. Catching bugs in the web of program invariants. In
PLDI, pages 23–32, May 1996.

[11] O. Greevy and S. Ducasse. Correlating features and code using a
compact two-sided trace analysis approach. InCMSR, pages
314–323, Mar. 2005.

[12] O. Greevy, S. Ducasse, and T. Gı̂rba. Analyzing feature traces to
incorporate the semantics of change in software evolution analysis.
In ICSM, pages 347–356, Sept. 2005.

[13] J. Henkel and A. Diwan. Discovering algebraic specifications from
Java classes. InECOOP, pages 431–456, July 2003.

[14] I. Hofacker. Vienna RNA package.
http://www.tbi.univie.ac.at/˜ivo/RNA/ .

[15] T. Joachims. Making large-scale support vector machine learning
practical. InAdvances in kernel methods: support vector learning,
pages 169–184. MIT Press, Cambridge, MA, USA, 1999.

[16] A. Kennedy.Programming Languages and Dimensions. PhD thesis,
University of Cambridge, April 1996.

[17] A. Kuhn, O. Greevy, and T. Ĝırba. Applying semantic analysis to
feature execution traces. InPCODA, pages 48–53, Nov. 2005.

[18] J. R. Larus and S. Chandra. Using tracing and dynamic slicing to
tune compilers. Technical Report 1174, University of Wisconsin –
Madison, Madison, WI, Aug. 26, 1993.

[19] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isolation via
remote program sampling. InPLDI, pages 141–154, June 2003.

[20] R. Milner. A theory of type polymorphism in programming.J. Comp.
Syst. Sci., 17(3):348–375, 1978.

[21] R. Milner, M. Tofte, R. Harper, and D. MacQueen.The Definition of
Standard ML (Revised). MIT Press, 1997.

[22] M. Mock, M. Das, C. Chambers, and S. Eggers. Dynamic points-to
sets: A comparison with static analyses and potential applications in
program understanding and optimization. InPASTE, pages 66–72,
June 2001.

[23] N. Nethercote and J. Seward. Valgrind: A program supervision
framework. InRV, July 2003.

[24] R. O’Callahan.Generalized Aliasing as a Basis for Program
Analysis Tools. PhD thesis, Carnegie-Mellon University, Pittsburgh,
PA, May 2001.

[25] R. O’Callahan and D. Jackson. Lackwit: A program understanding
tool based on type inference. InICSE, pages 338–348, May 1997.

[26] J. H. Perkins and M. D. Ernst. Efficient incremental algorithms for
dynamic detection of likely invariants. InFSE, pages 23–32, Nov.
2004.

[27] P. Rapicault, M. Blay-Fornarino, S. Ducasse, and A.-M. Dery.
Dynamic type inference to support object-oriented reengineering in
Smalltalk. InECOOP ’98 Workshop on OO Reengineering, pages
76–77, July 1998.

[28] T. Reps, T. Ball, M. Das, and J. Larus. The use of program profiling
for software maintenance with applications to the year 2000 problem.
In ESEC/FSE, pages 432–449, Sept. 1997.

[29] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst. Automatic test
factoring for Java. InASE, pages 114–123, Nov. 2005.

[30] S. A. Spoon and O. Shivers. Demand-driven type inference with
subgoal pruning: Trading precision for scalability. InECOOP, pages
51–74, June 2004.

[31] B. Steensgaard. Points-to analysis in almost linear time. InPOPL,
pages 32–41, Jan. 1996.

[32] F. Tip. A survey of program slicing techniques. Report CS-R9438,
Centrum voor Wiskunde en Informatica (CWI), Amsterdam, 1994.

[33] G. A. Venkatesh. Experimental results from dynamic slicing of C
programs.ACM TOPLAS, 17(2):197–216, Mar. 1995.

[34] M. Weiser. Program slicing.IEEE TSE, SE-10(4):352–357, July
1984.

[35] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer
alias analysis using binary decision diagrams. InPLDI, pages
131–144, June 2005.

[36] N. Wilde and M. C. Scully. Software reconnaissance: mapping
program features to code.Journal of Software Maintenance,
7(1):49–62, 1995.

[37] W. E. Wong, S. S. Gokhale, and J. R. Horgan. Quantifying the
closeness between program components and features.J. Syst. Softw.,
54(2):87–98, Oct. 2000.

