
Dynamic Inference of Abstract Types

Philip J. Guo, Jeff H. Perkins, Stephen McCamant, Michael D. Ernst
Computer Science and A.I. Lab

Massachusetts Institute of Technology

Dynamic Inference of Abstract Types, Philip J. Guo, ISSTA 2006 1

Declared types
// Order cost = base cost + tax + shipping
int totalCost(int miles, int price, int tax)
{

int year = 2006;
if ((miles > 1000) && (year > 2000)) {

int shippingFee = 10;
return price + tax + shippingFee;

} else {
return price + tax;

}
}

Few declared types (e.g., int, float) often
used for conceptually-distinct values

Dynamic Inference of Abstract Types, Philip J. Guo, ISSTA 2006 2

Abstract types
// Order cost = base cost + tax + shipping
Money totalCost(Distance miles, Money price, Money tax)
{

Time year = 2006;
if ((miles > 1000) && (year > 2000)) {

Money shippingFee = 10;
return price + tax + shippingFee;

} else {
return price + tax;

}
}
• Values of the same abstract type are conceptually

similar and can be used in the same contexts
• Inferring abstract types:

– Value interactions unify their abstract types
– Variables have the same abstract type if their values do

Dynamic Inference of Abstract Types, Philip J. Guo, ISSTA 2006 3

Uses of abstract types

• For program understanding
– Indicates how variables relate
– Case study demonstrates effectiveness

• For program development
– Compare inferred types to expectations
– Bug finding, refactoring

• For automated analysis tools
– Tools operate on variables of the same type
– Abstract types finer than declared types, so

analysis results and performance improve

Dynamic Inference of Abstract Types, Philip J. Guo, ISSTA 2006 4

Inference of abstract types

• The problem: Automatically infer
abstract types from a program

• Previous work: Static analysis [O’Callahan97]

– Examples of imprecision:
• Flow-insensitive - Each variable has only 1 abstract

type throughout execution
• Confounds values stored inside of arrays

• Our contribution: The first known
dynamic approach

Dynamic Inference of Abstract Types, Philip J. Guo, ISSTA 2006 5

Dynamic inference of abstract types

• Technique
– Observe interactions to infer types for values
– Merge value types to obtain variable types

• Implementations
– x86/Linux binaries (C/C++), Java bytecodes

• Evaluation
– Accuracy
– Program understanding
– Invariant detection

Dynamic Inference of Abstract Types, Philip J. Guo, ISSTA 2006 6

Dynamic inference of abstract types

• Technique
– Observe interactions to infer types for values
– Merge value types to obtain variable types

• Implementations
– x86/Linux binaries (C/C++), Java bytecodes

• Evaluation
– Accuracy
– Program understanding
– Invariant detection

Dynamic Inference of Abstract Types, Philip J. Guo, ISSTA 2006 7

Infer abstract types for values

• Maintain disjoint interaction sets of values
– Each set represents an abstract type

• Value creation:
– Each new value is placed into a singleton

interaction set
– New value created from a literal in the code

(e.g., 42), data read from file, or user input

• Value interaction:
– When values interact during execution, merge

their interaction sets

Dynamic Inference of Abstract Types, Philip J. Guo, ISSTA 2006 8

• An interaction is a binary operation

• Interactions convey programmer intent
• Interactions merge value abstract types

– arithmetic (+, -, *, /, …)
– comparison (==, <, >, …)

– logical (&&, ||, …)

isWin = myScore > yourScore

Value interaction

profit = revenue - cost

if (p && *p) { ... }

Dynamic Inference of Abstract Types, Philip J. Guo, ISSTA 2006 9

Value type inference example
1. int totalCost(int miles, int price, int tax) {
2. int year = 2006;
3. if ((miles > 1000) && (year > 2000)) {
4. int shippingFee = 10;
5. return price + tax + shippingFee;
6. } else {
7. return price + tax;
8. }
9. }

Dynamic Inference of Abstract Types, Philip J. Guo, ISSTA 2006 10

Value type inference example

totalCost(3000, 50, 3);

1. int totalCost(int miles, int price, int tax) {
2. int year = 2006;
3. if ((miles > 1000) && (year > 2000)) {
4. int shippingFee = 10;
5. return price + tax + shippingFee;
6. } else {
7. return price + tax;
8. }
9. }

Dynamic Inference of Abstract Types, Philip J. Guo, ISSTA 2006 11

Value type inference example
1. int totalCost(int miles, int price, int tax) {
2. int year = 2006;
3. if ((miles > 1000) && (year > 2000)) {
4. int shippingFee = 10;
5. return price + tax + shippingFee;
6. } else {
7. return price + tax;
8. }
9. }

totalCost(3000, 50, 3);

3000

miles

50 3

price tax

Dynamic Inference of Abstract Types, Philip J. Guo, ISSTA 2006 12

Value type inference example
1. int totalCost(int miles, int price, int tax) {
2. int year = 2006;
3. if ((miles > 1000) && (year > 2000)) {
4. int shippingFee = 10;
5. return price + tax + shippingFee;
6. } else {
7. return price + tax;
8. }
9. }

3000

miles

totalCost(3000, 50, 3);

2006

year

50 3

price tax

Dynamic Inference of Abstract Types, Philip J. Guo, ISSTA 2006 13

Value type inference example
1. int totalCost(int miles, int price, int tax) {
2. int year = 2006;
3. if ((miles > 1000) && (year > 2000)) {
4. int shippingFee = 10;
5. return price + tax + shippingFee;
6. } else {
7. return price + tax;
8. }
9. }

3000 50 3

miles price tax

totalCost(3000, 50, 3);

20061000 2000

year

(miles > 1000) (year > 2000)1000 2000

Dynamic Inference of Abstract Types, Philip J. Guo, ISSTA 2006 14

Value type inference example
1. int totalCost(int miles, int price, int tax) {
2. int year = 2006;
3. if ((miles > 1000) && (year > 2000)) {
4. int shippingFee = 10;
5. return price + tax + shippingFee;
6. } else {
7. return price + tax;
8. }
9. }

3000 50 3

miles price tax

totalCost(3000, 50, 3);

200620001000 10

shippingFee year

Dynamic Inference of Abstract Types, Philip J. Guo, ISSTA 2006 15

return price + tax + shippingFee

1. int totalCost(int miles, int price, int tax) {
2. int year = 2006;
3. if ((miles > 1000) && (year > 2000)) {
4. int shippingFee = 10;
5. return price + tax + shippingFee;
6. } else {
7. return price + tax;
8. }
9. }

price + tax + shippingFee

Value type inference example

3000 50 3

miles price tax

totalCost(3000, 50, 3);

20062000

year

1000 10

shippingFee

63

return

price + tax

Dynamic Inference of Abstract Types, Philip J. Guo, ISSTA 2006 16

Infer abstract types for variables

3000 50 3

miles price tax

totalCost(3000, 50, 3);

20062000

year

1000 10

shippingFee

63

return

• Variables have the same abstract type if their values do
• Occurs at function entrance and exit points

1. int totalCost(int miles, int price, int tax) {
2. int year = 2006;
3. if ((miles > 1000) && (year > 2000)) {
4. int shippingFee = 10;
5. return price + tax + shippingFee;
6. } else {
7. return price + tax;
8. }
9. }

Dynamic Inference of Abstract Types, Philip J. Guo, ISSTA 2006 17

Variable type inference example
1. Money totalCost(Distance miles, Money price, Money tax) {
2. Time year = 2006;
3. if ((miles > 1000) && (year > 2000)) {
4. Money shippingFee = 10;
5. return price + tax + shippingFee;
6. } else {
7. return price + tax;
8. }
9. }

3000 50 3

miles price tax

totalCost(3000, 50, 3);

20062000

year

1000 10

shippingFee

63

return

{miles}, {price, tax, shippingFee, return}, {year}
Analysis output for totalCost():

Dynamic Inference of Abstract Types, Philip J. Guo, ISSTA 2006 18

“Joe”

“Joe” “Main St.”

Tracking variables

Tracking values

strlen(name);
strlen(address);

strlen(name);
strlen(address);

int strlen(char* arg);
char *name, *address;

{name, arg}, {address}
{name, arg, address}

{name}, {address}

• Naturally achieves context- and flow- sensitivity

...
// Use name, address

...
// Use name, address

{name, address}

{name}, {address}

Why track values?

name addressarg

“Main St.”name addressarg

Dynamic Inference of Abstract Types, Philip J. Guo, ISSTA 2006 19

Dynamic inference of abstract types

• Technique
– Observe interactions to infer types for values
– Merge value types to obtain variable types

• Implementations
– x86/Linux binaries (C/C++), Java bytecodes

• Evaluation
– Accuracy
– Program understanding
– Invariant detection

Dynamic Inference of Abstract Types, Philip J. Guo, ISSTA 2006 20

Implementations

• Maintain a 32-bit tag along with each value
• Instrumentation code creates tags, copies tags,

and unifies interaction sets of tags
• For x86/Linux binaries (currently C and C++)

– Dynamic binary instrumentation using Valgrind
– Tag for each register and for every byte of memory

• For Java 1.5 programs
– Bytecode instrumentation using BCEL
– Tag for every primitive variable on stack and for every

primitive field within objects

Dynamic Inference of Abstract Types, Philip J. Guo, ISSTA 2006 21

Dynamic inference of abstract types

• Technique
– Observe interactions to infer types for values
– Merge value types to obtain variable types

• Implementations
– x86/Linux binaries (C/C++), Java bytecodes

• Evaluation
– Accuracy
– Program understanding
– Invariant detection

Dynamic Inference of Abstract Types, Philip J. Guo, ISSTA 2006 22

Evaluation of accuracy

• anagram generator program (740 LOC)
Hand Dynamic Static

• Hand examination of code and comments

revealed 10 abstract types
– e.g., “word”, “word count”

• Our dynamic analysis found 11 types
– Failed to unify two variables of type “word length”

because their values never interact

• Static analysis (Lackwit) found 7 types
– Failed to distinguish elements of argv[] array

– wordplay –d<depth> <word> -f <dictionary>

– Confounded “recursion depth” and “word” types

• 21 global variables

Dynamic Inference of Abstract Types, Philip J. Guo, ISSTA 2006 23

Program understanding – RNAfold

• RNA folding program written in C (1804 LOC)

• Programmer refactored 55 int variables of abstract

type energy to type double
– Took 16 hours of work to find the energy variables

amongst hundreds of ints; tedious & error-prone
– 2 iterations before he was confident of correctness

• Ran our analysis on a 100 base pair RNA sequence
– Found 60 int variables in one abstract type
– 5 non-energy variables were used inconsistently in

complex initialization code
– He quickly recognized and filtered out these variables

• Programmer estimated that our tool would have
saved 90-95% of his effort

Dynamic Inference of Abstract Types, Philip J. Guo, ISSTA 2006 24

Program understanding – SVM-Light

• Support vector machine written in C (5834 LOC)

• Programmer wanted to understand and port it

• Our analysis increased his confidence in his

understanding of the algorithm

• Perfect correspondence for “error bounds” vars.

• A variable buffer was in the same type as many

other variables

– He initially suspected tool imprecision

– He learned that buffer was used pervasively

Dynamic Inference of Abstract Types, Philip J. Guo, ISSTA 2006 25

Invariant detection with abstract types

• Daikon uses machine learning to infer relations
between variables (e.g., tax < price)

– Only compares variables of the same type

• Abstract types improve results

– Relations between variables of different abstract types
are likely to be spurious (e.g., miles > tax)

– Produces fewer and more relevant invariants

• Abstract types improve run time and memory use

– No need to find relations between variables of different
abstract types

Dynamic Inference of Abstract Types, Philip J. Guo, ISSTA 2006 26

Invariant detection with abstract types

Time Memory # invariants

Representation
types (default)

1.0 1.0 1.0

Declared types 0.85 0.84 0.70

Abstract types 0.65 0.64 0.13

• Averages for 8 programs (C and Java)
• We examined many eliminated invariants; all spurious
• Greater improvements on larger programs

– Largest C program was a 17 KLOC module within perl (105 KLOC)
– Largest Java program was a 13 KLOC module within javac (40 KLOC)

• Static analysis did not scale

Dynamic Inference of Abstract Types, Philip J. Guo, ISSTA 2006 27

Contributions

• Dynamic approach to inference of
abstract types
– Operates on values; maps to variables
– Conceptually simple, precise, and effective in

practice

• Implementations for C/C++ and Java
• Evaluation

– Accurate
– Assists programmers in understanding code
– Improves results and performance of an

automated tool

	Dynamic Inference of Abstract Types
	Declared types
	Abstract types
	Uses of abstract types
	Inference of abstract types
	Dynamic inference of abstract types
	Dynamic inference of abstract types
	Infer abstract types for values
	Value interaction
	Value type inference example
	Value type inference example
	Value type inference example
	Value type inference example
	Value type inference example
	Value type inference example
	Value type inference example
	Infer abstract types for variables
	Variable type inference example
	Why track values?
	Dynamic inference of abstract types
	Implementations
	Dynamic inference of abstract types
	Evaluation of accuracy
	Program understanding – RNAfold
	Program understanding – SVM-Light
	Invariant detection with abstract types
	Invariant detection with abstract types
	Contributions

