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Abstract

Workflow systems implement process definitions in laboratory, office, and industrial
settings. In many cases, the process definition is implicit in the ad-hoc software
written for a particular task. In other cases, a generic framework provides basic
functionality and structure, offering quicker development and advanced features. Few
workflow systems handle changes in the process definition or the implementing code.
This work shows that complicated workflow processes can be composed of a few simple
primitives and that changes in the workflow structure and code can be managed
effectively.
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Chapter 1

Introduction

Workflow Management Systems enact process definitions, manage the resulting pro-
cess instances, and report on the results. Unlike traditional software processes, the
Workflow process often involves both computational work and physical work that
exists outside the computer system. Steps in the process generally involve a single,
well defined input and no global state. For example, a bank considers each loan appli-
cation independently using a well defined process and might use a Workflow System
to organize the activities and data related to loan approval. While the same process
could be implemented by custom software written for a particular task, a Workflow
Management System provides a framework and pre-built functionality. The Work-
flow Management System described in this work provides a modular system that
can implement most process definitions and conveniently handles changes to those
definitions.

Our work makes two contributions to the study of Workflow Management Systems
by addressing extensibility and change. We describe the design and implementation of
our workflow system that allows complicated functionality to be created with a mini-
mal set of primitives. Our system allows users to employ their own implementation or
reuse a previous implementation of advanced features if the default implementation is
unsuitable. Our system also encourages programmers to write reusable code that may
be used with multiple processes. Furthermore, our implementation remains simple

even as users add features because the features are built on top of the system rather
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than integrated into the core. Many other systems provide complex primitives for
scheduling, authorization, roles, worklists, containers, and domain-specific features.
In doing so, they frequently prevent extensibility, lock the user into the provided
feature implementation, and make the core system difficult to maintain.

While many Workflow Management Systems model processes, few model the
changes that may occur in a process. Our second contribution is to discuss the
design and implementation of extensions to handle revisions to a Workflow process.
In particular, we address the problem of running multiple versions of a process simul-
taneously.

Before considering Workflow Management Systems further, we present a short
case for their utility. Then we define the terms that we will use in our discussions and
introduce the problem of change in workflow systems. Our introduction to workflows
concludes with a brief survey of other Workflow Management Systems.

The second chapter of this work describes the design requirements and design
decisions made for the implementation of our Workflow Management System. Chap-
ter three describes our implementation. Chapter four describes modifications to our
system to support change in the workflow schema or code. Chapter five discusses

several potential features that we have not yet implemented.

1.1 Why Are Workflow Systems Useful?

Consider a high throughput scientific research laboratory such as the Whitehead
Genome Center where a researcher has asked a programmer for support in a project
that involves laboratory and computational work to perform thousands or millions
of experiments per week. The programmer must produce a software system that can
take input from the researcher, create worklists for the laboratory technicians, accept
laboratory results, record data, perform analyses of the data, and provide statistics
and reports about the throughput of the whole project.

Projects often start on a small scale. Sometimes the researcher abandons the

project because of poor results. In other cases, the experiments work well and the
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project is scaled up dramatically. Without suitable tools, the programmer must write
the system from scratch, requiring decisions about how much time to spend building
software infrastructure. Since she cannot predict which course a project will follow, a
developer cannot justify a large time investment to create custom software to manage
the data for the project. For example, writing a comprehensive reporting suite that
can track data through whatever ad-hoc pipeline the programmer has created will
take a long time. Even if the programmer were willing to devote the necessary time,
the researcher probably doesn’t want to wait months or years to start their work.
Without tools, the programmer may repeat errors made by implementors of pre-
vious systems [6, 7]. Experience shows that systems built without the appropriate
tools tend to be hastily written, fragile, and unable to scale if the project is ramped
up. For example, many systems fail to handle unusual input correctly or suffer data
corruption when programs run simultaneously or crash. This situation calls for a set
of tools to provide a framework for developing workflow systems by abstracting out
the common features, allowing the programmer to concentrate on the unique aspects

of the task at hand, and promoting reuse of code between projects.

1.2 Definitions

Workflow Management System software tracks data from, analyzes data from,
reports on, and drives processes. In general, these processes involve physical steps
such as laboratory experiments, document processing, transportation, or manufac-
turing, in addition to computational steps. A Workflow Process is specific process
definition of work that is to be performed. A Workflow Instance is an instantiation
of a Workflow Process on one Material. An Instance takes exactly one of the possible
paths through the Process. A series of Steps processes computation or physical re-
sources called Materials. A Material in the system can represent a physical object
such as a blood sample at a hospital diagnostic laboratory or it can represent a com-
putational object such as the alignment between two biological sequences. An Event

object records the outcome of a Step and contains a Result, a string summarizing the
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Event. For example, a Step might check that a gel from a DNA sequencing machine
has an average quality greater than 20; the Result might be OK if the average quality
is greater than 20 or FAIL otherwise.

We label Materials with States to describe their current status in the Workflow
Process. A collection of Materials in the same State forms a queue for processing by
a specific Step. The State of a Material will change as the Material moves through
the process and the system places the Material in different queues. The set of Steps
(recorded as Events and their Results) performed on a Material comprises the Ma-
terial’s History; a Material’s History uniquely determines its current State in the
workflow [2, 1].

In our system, classes called Listeners perform the Steps. Each State in the
process may contain Listeners. When a Material arrives in that State, the system
invokes the Listeners on the Material. The Listener code is not part of the core
workflow system; it is generally provided by the users to implement process-specific
work.

A Workflow Process, often referred to as a workflow, resembles a state machine
or graph. A Material moves through the workflow, moving from State to State along
the edges of the graph. Each transition corresponds to some Step that occurs on the
Material. The set of edges traversed is the History of the Material. Figure 1-1 shows

a small example process.

1.3 Workflow Change

Workflows rarely model static processes. The users of the Workflow System will want
to change the process structure and code to reflect the new physical process. In
ideal circumstances, the new process and code apply to all Materials in the system.
Unfortunately, circumstances sometimes prevent this type of change; some Materials
may need to continue in the old process while others follow the new process.

A Workflow Management System should provide a language or method for describ-

ing changes to a workflow process’s structure, a language or method for describing
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Figure 1-1: A Sample Workflow This process contains three States (the boxes) and
two Steps (the lines leaving the boxes) to process Materials representing a student’s
choice of advisor. New choices begin in the unassigned State and are processed by
the pickAdvisor Step. This Step has only one valid result, ok. Choices which have
been processed by pickAdvisor are placed in the assigned State and then processed
by the askAdvisor Step in which the chosen advisor may review the decision. The
advisor may approve or reject the decision. The system moves choices with the
approve Result to the final assignment State. Choices with the reject Result
return to the unassigned State.

If the advisor approves a student’s choice, the History of the choices Material will
include a pickAdvisor Step and an askAdvisor Step.

migration for in-progress processes from an old process definition to a new process
definition, and the ability to effectively manage and run multiple versions of a pro-
cess. Shazia Sadiq’s papers on workflow schema changes address the first two issues
by proposing such languages [8, 9, 10]. However, no Workflow System besides our

system adequately addresses changes to the code.

1.4 Related Systems and Other Work

While we have provided a terminology and will discuss a design and implementation

for our Workflow Management System, many other designs and implementations are
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possible. Other systems have emphasized different features to accommodate different
ideas of exactly what a Workflow Management System is and what it should provide.
We survey several other Workflow Management Systems to show what the range of

desired features might be and to present designs that have influenced ours.

1.4.1 Workflow Management Coalition

The Workflow Management Coalition (WFMC) standards describe workflow process
specifications, workflow enactment, and communications between workflow systems.
The standards focus on business processes and provide features for work lists (assign-
ing an open task to a specific person, machine, or group thereof) and interfaces for
process control [4]. While few, if any, products fully implement the WFMC specifi-
cation, much of the terminology is standard.

In the WFMC model, an administrator uses a definition tool to write the pro-
cess definition. The workflow management engine combines the process definition
and supporting information such as organization/role data to enact the process. The
engine may “activate applications necessary to execute particular activities” and will
place items into worklists when user interaction is necessary. The activated applica-
tions closely resemble our system’s Listeners. Worklists are an excellent example of
domain-specific functionality being added to a workflow system. Worklists are not
essential to process enactment and are useful only when the system needs to assign
work to specific users.

The WFMC’s focus on business processes led it to include a variety of process
control and supervisory functions in the engine-client API. For example, the API
defines functions to stop, start and suspend process instances. The administrative
API defines functions to assign roles, grant and revoke privileges, and allocate re-
sources. These functions also reflect business-specific concepts that do not exist in
many workflows that focus on computation.

Our Workflow Management System, and many written by others, share much of
the terminology and general system structure of the Workflow Management Coali-

tion. For example, most Workflow Management Systems include components for
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process design, process enactment, and process definition storage. Our system does

not implement the WFMC specifications.

1.4.2 LabBase and LabFlow

Steve Rozen, Nathan Goodman, and Alex Smith developed LabBase and LabFlow at
the Whitehead Institute/MIT Center for Genome Research and the Jackson Labora-
tory. LabBase provides Perl object storage, State recording, and History recording
[2]. LabFlow provides a simple engine to implement a specified workflow process [1].

LabBase’s object storage is based on a simple Object-Relational mapping defined
in a schema that specifies the database types of the object fields. The LabBase li-
braries extract the relevant fields from Perl data structures and perform the necessary
data interaction.

LabBase also provides State and History recording. In LabBase’s terminology,
objects can be labeled as Materials or Steps. Labbase can associate Materials with
predefined tags known as States that describe the status of the Material in some
process. LabBase also allows a change in a Material’s State to be associated with
a Step object. The ordered collection of Steps associated with a Material forms
its History. Our concepts of State and History closely resemble LabBase’s. While
LabBase provides a mechanism to store State and History information, it has no
concept of process definition to ensure that only valid States are assigned to Materials.

LabBase also provides the interesting feature that fields of Steps can be viewed
as fields of associated Materials. This allows Materials to be declared with a minimal
set of fields. Additional virtual fields can be accumulated from the Steps performed
over the course of the process.

LabFlow provides a simple process engine using a user-provided process schema
(definition) and user-provided classes that implement the actual work. The user can
specify a series of steps to be performed and provide an implementation for the steps
by provided code that implements an appropriate interface. LabFlow does not provide
a good method to handle asynchronous Steps (e.g., those that require waiting for user

input). LabFlow also lacks a system, similar our high level to low level translation,
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for encapsulating common behaviors.

1.4.3 MicroWorkflow

Dragos Manolescu’s MicroWorkflow paper criticized the size and feature-creep of
many commercial workflow systems [5]. In particular, Manolescu claimed that sys-
tems limited flexibility by not providing a means to use custom components, instead
providing many default features. The MicroWorkflow system takes an alternate ap-
proach; a few simple components provide core workflow functionality and allow the
user (or programmer) to use whatever components are desired.

The components of Manolescu’s system are similar to ours and to the WFMC’s:
an execution core, a monitoring component, history recording, persistence, worklists,
and workflow combination. We also share the goal of producing a modular and

extensible system.

1.4.4 Dynamic Workflow Modification

Shazia Sadiq addresses the problems of handling in-progress process instances when
the underlying process definition changes [10, 9, 8]. Sadiq defines five “modification
policies” to describe workflow change: flush, abort, migrate, adapt, and build.

The flush policy allows active instances to complete the old process definition but
all new instances follow the new process. Abort is the simplest modification policy;
the system stops active process instances and remove them. The migrate policy moves
process instances from the old process to the new. Migration can be complicated if
certain paths through the process become invalid; the policy must define rules to
modify any valid process instance such that it is valid in the new process definition.
The adapt policy handles cases in which the process definition changes temporarily
(e.g. exception handling). The build policy includes all changes in which the new
process is built from scratch rather than being based on an existing process.

The Sadiq papers define a method for implementing these policies based on clas-

sifying instances and on Compliance Graphs that map instances from the old process
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definition to the new. This technique complements our approach to managing process
change. Sadiq describes a method for migrating processes but does not discuss any
techniques to simultaneously run two processes, probably because the migration tech-
nique addresses Workflow Management Systems in general rather than a particular

system.

1.4.5 Ad Hoc Workflow

In some settings, the process definition cannot be accurately or reliably specified
before the process begins. The process may be too complicated, as is often the case
when humans are required to make decisions about how to handle Materials. In other
cases, the process is not well understood. Whatever the cause, these settings would
render a process definition useless because they would generate a huge number of
exceptional cases. Here, the best that workflow systems can do is to record the work
and attempt to report after the fact. Our design allows ad-hoc movement through a
process only in exceptional circumstances. In general, we require Materials to follow

the process specification.
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Chapter 2

Design of a Workflow System

We now turn to the design requirements for our workflow system by discussing our
assumptions and enumerating the system’s user-visible functionality. These assump-
tions and requirements lead to the design of the system components and their inter-

actions.

2.1 Assumptions

We assume that a Material can reside in at most one State in a workflow. We also
assume that the State uniquely defines the work that is to be performed; however, in
some cases, exceptional events occur, and the workflow system should handle them
gracefully. Finally, we assume that a process definition has exactly one initial State.

In some physical systems, a Material may be in more than one State, allowing
a process to branch and then merge again later. For example, two quality checks
may be performed on a sample in parallel to reduce the latency of the laboratory
process. Our system does not allow two parallel actions in a single workflow process.
Instead, we model our workflow on a state machine and allow a Material to have at
most one State in a process at a given time. Allowing only a single State simplifies
both the implementation of the system and reasoning about the system; there can
never be any ambiguity about a Material’s location in the process. In other words, a

Material’s State uniquely identifies the next Step; we do not allow a situation where
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one of several Steps might process some Material.

We require that only the transitions specified in the Workflow description be al-
lowed under normal circumstances, forbidding ad-hoc workflows. In an ideal setting,
we would be able to model every process in advance and with perfect accuracy. Ex-
perience indicates otherwise; in some cases, a transient system failure or some other
exceptional circumstance will require that we violate the structure of the workflow
and manually move a Material from one State to another. The system must allow a
user to force such transitions.

We require that a Workflow process have a single initial State, providing each
Workflow with a unique starting point. A Workflow may have multiple terminal
States. The single-beginning, multiple-ending characteristic reflects the fact that a
process should begin at a single Step but may branch along several paths as the work

proceeds.

2.2 Requirements

The Workflow system should allow the programmer to concentrate on the high-level
modeling of the laboratory process. Furthermore, it should encourage code reuse.
These goals can be accomplished by providing an intuitive, high level process de-
scription language that makes using existing components and combining existing
workflow easy. The interfaces that user-components implement should encourage
reuse by providing minimal context to the component and by allowing per-workflow

parameterization.

Workflow Design and Representation

The system should provide an intuitive way to describe the process of interest. The
most natural way to model a process is with something resembling a graph. Nodes
in the graph represent States in the process and edges represent transitions between
States (i.e. Steps). Workflow development begins with the specification of the work-

flow process: enumeration of the States and the connecting Steps. This information
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is data provided to the workflow system [3]. Figure 2-1 shows an example of the high

level graphical language.

ready AlTgn ///%|ign\‘ Al :4 Al'i gnFai
7~

pass

Al i gnCK

hol d

Figure 2-1: An Example High Level Workflow Description This sample work-
flow process definition uses a sub-workflow and scheduling. The square boxes repre-
sent simple States. The triangle represents a call to another workflow. The entire
sub-workflow is executed as a single Step and its terminal State determines the Re-
sult of that Step. If the alignment process has failed, the Material is moved to the
AlignFail State. The parallel lines indicate that Materials will be held until some
scheduling criteria is met.

User Code Interface

To enact the workflow, the developer must provide code to implement the specific
functionality of the system. This code implements (in the case of computational steps)
or represents (in the case of physical work) the actions of the process. Our system
must provide a simple interface for user code and must encourage the development
of reusable code.

The system combines the workflow process description and the provided code
into the implementation of the workflow process. For each transition in the workflow
graph, the system calls the appropriate user code for the step or accepts input from an
external program. Having performed this step, the system adds the resulting Event
to the Material’s History, moves the Material to the correct State, and then proceeds
to the next step in the process.

The interface between the system and the user code should be simple. The user

code for Listeners receives the input Material and the previous Event in the process
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but does not know its position in the process or the next step. In our design, the
Material moving through the system is the basic unit of work and information. Con-
sequently, each Step should require only that Material as input. The code for the
Step should not require access to global state.

We do not allow the user code to specify the destination State for the Material;
instead, we allow the code to return a Result that determines the Material’s routing.
If we allowed the Listener to specify the next State, then all of the Listeners in a
process would be tied to each other, making reuse without modification difficult. For
example, if class A referred to B which referred to C and we replaced C with Z, then
we would need to replace or modify B and therefore A as well. By making the system
map Results to States, we add a layer of indirection that allows and encourages user
code to be more general than the process using it.

External programs that communicate with the system also need a simple interface
for dispatching Events into the system. External programs need to dispatch Events
to a particular State (generally the initial State of a process) and dispatch Events

such that the appear to come from a particular State.

Workflow Parameterization

Workflows sometimes share the same structure (States and Event results) and code
but differ in details. For example, a Step that checks the result of a laboratory test
might need a higher quality threshold in one workflow than in another. Workflow
Parameterization allows the developer to specify runtime parameters for the user

code.

Reporting

The Workflow system should also provide facilities for report generation. With its
standardized process representation and History recording, the system can generate
many simple reports about the progress of Materials through the workflow [6]. For
example, the system can report how many Materials were processed by a Step during

a specified time interval. Our design does not yet include a reporting system.

26



Workflow Revisions

Workflows often change, either in the structure of the process being implemented or

in the details of the Steps performed. A successful Workflow system needs to handle

changes or revisions in the workflow in a convenient manner [7]. Chapter 4 discusses

Workflow revisions in detail.

2.3 System Components

We now discuss the major components of our design.

A language to describe Workflows at a high level.

A language to describe Workflows at a low level.

A tool to translate the high level language into the low level language.
A tool to design high level workflow descriptions.

Classes to represent the Materials. To the Workflow system, these classes are

basically records (simple information containers).

Classes to implement the work (Listeners). These classes take in a Material and
perform the appropriate work. Some of these will be single classes, while others
will be external programs (not Listeners and not called by Listeners) that feed

results to the system.

Classes to record the work results (Events). These too are simple records pro-
duced by the work classes and associated with Materials to form the Materials’

History.

A Workflow Engine that accepts a workflow description and the user code and

enacts the process.

A Storage Engine. The storage engine must store both the description of the
process, the process’s run-time state, and serialized versions of the Materials

and Events.
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2.3.1 Workflow Description

Our Workflow Management System uses two levels of process description. At the high
level, a GUI that presents the workflow as a graph to show how Steps fit together.
However, a high level description might be a complicated entity with sub-workflows,
parallel processes, dependencies, scheduling, and chaining. Such complexity would be
difficult to handle in the actual Workflow Engine because of the variety and scope of
features needed; the number of potential interactions between features might make
testing the Engine difficult [5]. Furthermore, adding a new feature would require mod-
ifying the core engine rather than a separate, peripheral component. Consequently,
we have decided to use two levels of workflow description. The designer and users
of the system use the GUI to create a high level description that can include all of
the previously mentioned features. The high level workflow is translated into a lower
level workflow description that is simple to implement.

Translation promotes extensibility by providing a well defined means to add fea-
tures to the system without knowledge of the system’s internals or modifications to
the existing code. Furthermore, by implementing each feature as a separate set of
filters, we provide clear boundaries between each feature and the core engine. These
boundaries encourage modular implementations of the features. In particular, we
want to avoid a complicated engine implementation in which the various features

depend on each other.

High Level

The simplest workflow is a linear progression of Steps. Our high level description

language includes a variety of features that can add complexity:

e Branches. Materials come to a fork in the process and can follow one route
or another. In most cases, the branch selection algorithm is deterministic and
based on the History of the Material. A simple case of Branching routes the
Material to Step x+1 based only the Result of Step z (this is the default method

of routing Materials from one State to another). In figure 2-1, there is a branch
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after the Align sub-workflow based on the sub-workflow Result.
Joins. Two paths through the system merge.

Parallelization. Materials come to a fork in the process and proceed along both
paths in parallel. The paths could be paths through the same workflow or

through sub workflows.

Synchronization. Synchronization can take several forms. First, it can operate
as the inverse of parallel execution. Two paths join and a Material may not
proceed past the synchronization point until it has completed both paths. In
the second form, a Material might need to progress through two workflows A
and B in parallel and the execution of the Steps of A and the Steps of B must
be coordinated. For example, the third Step of B must happen at the same
times as the fourth Step of A.

Sub-Workflow. A Step in one workflow is another workflow.

Chaining. Materials move through workflow A and then through workflow B

(but do not return to A, as they would if B were a sub-workflow).

Timing and Scheduling. A workflow might have timing constraints that prevent
Materials from moving too fast, send notices if they move too slowly, or process
Materials on some schedule. For example, a certain computational Step should

only be run at night when the relevant machines are unused by interactive jobs.

Low Level

Our low level description does not directly implement most of the features available

in the high level description. Instead, we use a very simple representation of the

process. The description consists of a set of States and a set of Transitions. Each

State corresponds to one set of actions. Each State contains one Transition object

that maps the Result of the State’s actions to the next State.

Figure 1-1 shows a graphical representation of a low level description.
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2.3.2 Translation

Since the low level description object cannot represent all of the desired high level
features, the user interface translates the high level description into a low level work-
flow description. System-provided Listeners implement various features in the high
level description. To the Workflow Engine, these Listeners are no different than the
Listeners provided by the developer. However, the translation system provides them
to implement the high level features. For example, chained workflows can be imple-
mented as two separate workflows. The translator adds a Listener to the terminal

State of the first workflow that puts the Materials it sees into the second workflow.

2.3.3 User Interface

The user interface resembles a graph drawing program to allow the user to specify
the structure and parameters of a process. When the user has specified the process
structure, the Ul deposits a WorkflowDescription object into the persistent storage
using the Storage component (section 2.3.6). The GUI accepts dynamically provided
pluggable widgets for use in workflow design. Each such widget represents one Step

that can be added to a workflow and consists of :

e A factory to produce whatever objects represent States in the Ul’s representa-

tion of the workflow process.

e A filter that maps an instance of the workflow process representation to another
instance of the workflow process representation, replacing high-level features

with the low-level equivalent.

e Optionally, icons or renderers for use in graphical interfaces.

2.3.4 User Code

Users provide three types of code. Listeners implement the actions in the workflow.
Listeners must provide a method that accepts an Event and a Material and performs

the action. Our design does not force Events and Materials to provide any methods
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to the system as these objects are records for the process-specific data required by

and produced by the Listeners.

2.3.5 Workflow Engine

The Workflow Engine provides run-time support for the process. When executed, the
engine first obtains a workflow description. Our implementation accepts command
line parameters to specify the name and version of a workflow that is to be retrieved
using the Workflow Storage component (section 2.3.6). The engine then instantiate
Listener objects for the States or some subset thereof. One might wish to instantiate
only a subset of Listeners such that particular Steps are run on a particular machine
or to better distribute the load from computationally intensive Steps.

Having completed its initialization, the engine accepts Events from Listeners and
external programs, passing those Events to the appropriate Listeners. While passing
Events, the engine updates the State and History of Materials (using the Workflow
Storage).

Public Interface

To the developer, the Workflow Engine is relatively simple. It can be configured by
providing a low-level description of the process and Listeners. Our implementation
accepts command line paramenters to specify a process name and the information
needed to connect to SQL and JMS servers (see chapter 3 for more information). We
do not provide a Java interface that can invoke the engine.

Our design specifies a minimal Java interface to the Workflow Engine for dispatch-

ing Materials to the Engine. This interfaces provides two methods:

1. Dispatch an Event to a State : allows an external program to send an Event to
a particular State for processing. Only programs that dispatch Materials to the
initial State of a Workflow should use this feature. External programs should
generally not dispatch Events directly to the non-initial States of a workflow.

For an external program to know which to which State an Event should be
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dispatched, the program would need to know the workflow structure. While
this is possible (as we provide a means to retrieve workflow definitions), most
programs should leave Material routing to the system to ensure that the routing

is performed correctly (in case other work is done in conjunction with routing).

2. Dispatch an Event from a State : allows an external program to send an Event
that is to be dispatched as if it were from the specified State. This can be
used with any non-terminal State in the system. It will be used primarily by

programs that process Materials in States that do not create a new Event.

Failure Characteristics

Any engine implementation must have well defined failure and reliability character-
istics. When running, the engine passes Events from one State to another. Clearly
any implementation that drops Events is unacceptable as users will be unhappy when
workflow instances disappear because Events were lost. If the Engine software crashes
or is halted by a system or network failure, we need to know what happened to any
active Events. It may be acceptable in this situation to simply inform a user that
there was an error with the messages and require handling outside the system. We
consider this reliable as long as all such cases are reported. In general, however, we
expect that the system must reliably and properly deliver all messages.

In addition to handling failures of message delivery, the engine software must be
able to handle Listener failures. If a Listener fails by throwing an Exception, then

the system has several options:

e Ignore the problem. If an active Listener fails, then the system loses track of

the Material.

e Log the error but otherwise ignore the problem. The users of the system are

responsible for cleaning up any problems.

e Retry the Listener. While this might be useful for transient errors, there is no

guarantee that a Listener can be rerun safely.
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e Stop. Stop processing the Material and notify the users or administrator.

Our system implements the last behavior. If a Listener fails, the system stops pro-
cessing the Material and puts it aside for later handling by the system’s users or
administrator. We considered using the Retry behavior in some circumstances. If the
designer of a workflow process could mark Listeners as idempotent, then the system
could automatically retry those Steps up to some maximum number of times. We
chose not to implement this behavior as it adds complexity but does not completely

solve the problem as not all Listeners can be safely retried.

2.3.6 Workflow Storage

The first function of the workflow storage is to persistently store Workflow description
objects. The second function is to store the run-time state of the system, namely the
State and History of Materials. Finally, the storage component allows access to the
current State and History of the Materials.

Splitting the Workflow Storage from the Workflow Engine accomplishes several
goals. First, it accurately reflects the purposes of the two components. It seems
slightly unnatural that the Workflow Engine, a run-time construct, should be queried
for Material History or process descriptions. More importantly, it separates the im-
plementation of the two components, allowing one to be replaced or modified inde-
pendently of the other.

The Workflow Storage component records Material History and State. A Material
is in zero or one States in any workflow. When a Material moves to a new State, the
system removes the Material from the old State. When the Workflow Engine uses
the Workflow Storage, the standard pattern is to move the Material from one State
to another while adding an entry to the History; the Workflow Storage component
should support this as a single atomic operation. History is an append-only list of

the Events that have been associated with the Material®.

'TIdeally, it is append only. In reality, entries in the History may be deleted or modified to correct
software or laboratory errors.
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State and History Reporting

The Workflow Engine is the primary writer to the Workflow Storage. However, any
software interested in the workflow may read from the Workflow Storage to observe
the current workflow status or to examine a Material’s History. Our Workflow Storage

provides methods to
e Get a Material’s State in a workflow (or all workflows).
e Get a Material’s History (a list of Events) in a workflow (or all workflows).
e Get all Materials in a workflow that are in a certain State.
e Get all Materials of a certain type that are in a certain State.

o Get all Materials that have been associated with a certain Event. or type of

Event.

o Get all Materials that have been associated with a certain type of Event with

a certain Result.

We have not written a front-end to the reporting system to present this data to a
user.

Users of the system will undoubtably want to perform more complex queries that
combine the above mentioned criteria or that involve properties of the Materials and
Events. Since our workflow system does not specify the persistence mechanism for
Events and Materials, we cannot rely on its implementation and therefore have no
way to query fields of these persistent objects. This presents no difficulties for the
runtime components of the system but precludes a generic reporting infrastructure.
We anticipate that a generic reporting infrastructure will be written to support a

generic object storage facility, but have not implemented such a tool.
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Figure 2-2: Major System Components The user creates a high level description
of the process with the Workflow design tool (the GUI). The GUI’s translation com-
ponent translates the high level description into a low level description that uses only
simple primitives of Listeners, Results, and States to process Materials. The user
provides the low level description and code to implement the Steps (work classes),

Materials, and Events to the Workflow Engine, which enacts the process.

The Workflow Engine relies on the Storage Engine to maintain the State and History
data. A reporting component, which we have not implemented, might read the His-
tory data from the Storage Engine to generate reports about workflow throughput or

status.
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Chapter 3

System Implementation

Our Workflow System’s implementation consists of components (process design tool,
storage, and runtime engine) that interact through a few simple interfaces. The
Workflow Description Classes lie at the center of our system. These objects describe
a workflow process and all other components depend upon them. The Base Runtime
Classes represent the dynamic objects (Materials, Events, Listeners) used by the
other system components. The remaining components (storage component, a runtime
engine, and a user interface) all interact through the WorkflowDescription classes and
the Base Runtime classes. Consequently, the interfaces and implementations of the
peripheral components can be changed with minimal effect on the remainder of the

system.

Figure 3-1 shows the flow of data through the Workflow Engine.

3.1 Workflow Description Classes

The low level workflow description language’s components are shown in figure 3-2.
We ignore the high level description system here since many high level description
languages could be translated into our single low level language and because only the

user interface relies on the high level description.
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Figure 3-1: Runtime Dataflow in the Workflow Engine This figure illustrates
the flow of data for one Step in a process. The Engine has already read a process
description and created its runtime representation of the States in the process. At
left is the incoming Event, E1, which contains a Material. The Engine has used the
Result of E1 to route it to State S1. At S1, the system invokes each Listener on the
Event (and therefore on the Material). One Listener may produce a new Event, E2.
The Engine uses the Transition Description associated with S1 to map E2’s Result to
the next State. For example, a Result of “ok” maps to State S2. Before dispatching
E2 to S2, the Engine uses the Workflow Storage to associate E2 with the Material
and to associate the Material with State S2.

(

WorkflowDescription WorkflowDescription is the top level object to describe a
process. A WorkflowDescription has a Name attribute and contains a collection of

States.

State The State class corresponds directly to the concept of a State as a queue
of Materials waiting for some action or as a label to describe a Material’s sta-
tus in the process. A State’s Name attribute must be unique among all States
in the WorkflowDescription. The State also has boolean Initial and Terminal
to indicate whether the State is the first or last in the workflow. A State con-
tains a reference to a single TransitionDescription describing the path of Ma-
terials that have been processed by the State. Finally, a State contains a set of
ListenerDescriptions, at most one of which may describe an ActiveListener (see

section 3.2.4). A ListenerDescription specifies the Name of a class to execute when
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Figure 3-2: UML Diagram of the low-level Workflow description classes. A
WorkflowDescription is a collection of State objects with a Name. The WorkflowDe-
scription may contain any number of States, but a State must be contained by exactly
one WorfklowDescription. A State has a name and boolean attributes to indicate if
it is an initial or terminal State in the process. A State may contain any number
of ListenerDescription, each of which describes one Listener to be run on Materials
in that State. At most one of the Listeners at the State may be marked “active” to
indicate that it creates a new Event when invoked.

A non-terminal State must contain one TransitionDescription. Terminal States have
no TransitionDescription. The TransitionDescription indicates the class of the Event
object that Listeners at the State may produce. The TransitionDescription also maps
the Result of the Events produced to another State.

a Material arrives in this State. A ListenerDescription also contains a set of pa-
rameters that can modify the behavior of the Listener code on a per-workflow basis.
A State does not contain the actual Listeners; this would require having working
code for those classes during process design, which may happen before the Listeners

have been written.

TransitionDescription A TransitionDescription describes the paths from one
State to other States. The TransitionDescription specifies the Class of the Event

that will be passed from the SourceState to the next State. All Events contain a
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Result, a Material, and a Date. The TransitionDescription maps each Result to

the next State.

3.2 Base Runtime classes

All runtime components share the Base Runtime classes. Materials represent the
physical or computational objects that the system processes. Events record the results

of the work performed by Listeners on these Materials.

3.2.1 Materials

Material classes implement the Material interface. A Material must have

e A unique numeric identifier. The Workflow system uses the identifier internally
to track Materials. To keep the History and State for a Material, the system

must have access to some globally unique identifier for that Material.

e A creation date. The creation date is primarily useful to end-users or to devel-

opers who are debugging the workflow.

Classes that implement the Material interface may have as many other fields as

the developer sees fit to represent the physical or computational object.

3.2.2 Events

Events implement the Event interface to record the actions in the Workflow. Every

Event has

e A unique numeric identifier. The system uses the identifier to associate the

Event with the relevant Materials.

e A Date on which the action took place. In some cases, a single date is insufficient
to describe an Event (e.g. the starting data and ending date of a long running

computational process might differ by many days); we use a single date now for
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simplicity. Event classes are free to define attributes to allow more temporal

information to be stored.

e The Material upon which the action was taken.

e The Result of the action. This is a simple summary (represented as a string) of

the outcome or Result such as OK, PRESENT, or RETRY.

Classes that implement the Event interface may have as many other fields as the

developer sees fit to represent the physical or computational work they represent.

3.2.3 Storable

Materials and Events share three common behaviors in the context of a workflow
system. First, both are passed as inputs and outputs to and from the code that
implements the actual work of the process. This work may be done across time and
machines. Second, relationships between both types of objects are stored by the
workflow system to indicate the History and state of the system. Third, both Events
and Materials are assumed to have fields of interest to the user but which the generic

system components can ignore.

To recognize these similarities between Events and Materials, both interfaces in-
herit from the Storable interface. Storable objects provide two behaviors. First, each
Storable object has a unique numeric identifier that the workflow system can use to
track the object. Second, a Storable object supports the store and get operations

that save its fields to some persistent store and retrieve those fields.

To the runtime components of the workflow system, the methods used to gener-
ate unique identifiers and to provide object persistence are largely irrelevant. The
system’s Engine calls the store method at appropriate times to ensure that objects
are stored However, the system does not attempt to access the stored data nor does

it use the get method.
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3.2.4 Listeners

The work classes implement the actual work of the Workflow. Since our Workflow
system is written in Java, we attempt to express their role in standard Java terms.
Hence, we call these Listeners attached to a State. The Events received indicate that
a Material has entered the State. Implementing Listener, these classes provide an
onEvent method that receives the Event generated by the previous Step/Action in
the workflow. This input Event is generally the output of another Listener (the one
attached to the previous State) or the output of an external program. From the

Event, the Listener extracts the Material to be processed.

The decision to define onEvent as taking an Event as input has several important
characteristics. First, this approach seems natural to implement; whatever system
code for passes Events to Listeners should clearly not depend on the concrete type of
the Event. Instead, it should handle any implementation of Event. A Listener does
not know at compile time type what type of Event it will receive. While it would be
trivial for code to use Java’s instanceof operator or a reflection method to determine
this information at run-time; however, our design must encourage the development
of work classes that are independent (to the greatest degree possible) of the type of
Event received and therefore of the preceding Listeners in the workflow. We hope
that this independence will make the code written more general such that it can be

easily reused in other workflows.

Our system provides a mechanism to parameterize the behavior of the work classes.
For each Listener attached to a State, the process designer may provide a list of
properties. At run-time, the code performing the action has access to these properties

and may modify its behavior accordingly.

We have divided Listeners into two types. The first type of Listener receives
Events, but has no effect on the system. This type of Listener is passive (from the
system’s view). The second type of Listener is active; it receives Events, processes
Materials, and then returns a new Event describing that work to the system. A State

can have only one Active Listener associated with it, whereas any number of Passive
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Listeners may exist for a State. Multiple active Listeners would allow multiple results

to be returned, each potentially routing the Material to a different State.

Passive Listeners

Passive Listeners can implement many key functions of the system even though they
cannot directly return an Event. A simple example is an observer for an error State
that emails interested parties to inform them that the processing of a Material has
failed. Passive Listeners might also append items to the work list of a user. More

complicated passive Listeners might interact with external databases or programs.

Active Listeners

Active Listeners provide a method to return an Event to the system. An Active
Listener can represent any work that can be performed on demand. In general, any

purely-computational Step meets this criteria.

External Programs

Not all work is performed by Listeners attached to States. The inherent restriction
of a Listener is that it be able to perform its work upon demand- when an Event is
passed to it. In many cases, a Listener would have to block until some laboratory
or “real world” work is done. Other workflow systems have included protocols, often
quite complex, to interact with asynchronous processes or entities (e.g., people).

In our system, we took a simpler approach. Rather than block, the Listeners do
whatever work can be performed on demand but return no new Event to the system.
Instead, some external program will provide the Event to the system when the work
is complete. For example, the passive Listeners at a State might add an item to a
work list to indicate laboratory work that needs to be done by a user of the system.
The user would run a data entry program that dispatches the relevant Events back

to the system. Section 3.6 discusses other uses of external programs in more detail.
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3.3 Workflow Storage Component

The storage component provides persistent storage of process definitions, stores the
runtime status of process instances, and records the History of process instances.
The current implementation of the Storage component uses an SQL database as a
persistent store. All database interaction goes through the Java JDBC interfaces to
minimize the quantity of RDBMS-specific code. The database schema for our Oracle
implementation of the storage component is found in appendix A.

The Storage Component presents a public interface to retrieve process definitions

and to query the current State and History of a Workflow Instance.

3.3.1 Process Definition

To store a process definition, the system needs to serialize the objects described in
figure 3-2. The tables Workflow, WFState, StateListener, and TransitionDesc
store one row per corresponding objects. Properties is a supplementary table to
store the properties for Listeners. TransitionResult corresponds to the mapping
from a TransitionDescription to States and stores one row per result.

The Class table maps a class name to an internal id. This is used for process
definition storage to record the Listeners attached to a State and to record the type

of Event expected at a TransitionDescription.

3.3.2 Process Instance Status

The runtime tables store the status of the process instances. StateMap maps a [Ma-
terial, Workflow] pair to a State. No Material can be mapped to multiple States in
the same workflow.

ClassMap maps the identifier of Storable objects to their class. This table is
updated at runtime as Materials are associated with States. The purpose of the in-
formation is to be able to recreate objects as necessary. For example, a program
might wish to retrieve all of the Materials in a specified State to perform some pro-

cessing. The system fulfills this request by examining the StateMap to obtain the
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object identifiers for all of the Materials in that State. It can then determine the
class of each object and use Java’s reflection methods to instantiate an object of that
class, providing the identifier as the single argument to the constructor. The exter-
nal program could then call the object’s get method to retrieve the other fields as
necessary.

The append-only table HistoryMap associates Events with Materials to record the
History of the Material. All writing to this table occurs while the process is active.

The WorkflowInstance and InstanceMaterialMap tables are not used by the ba-
sic workflow implementation. Their purpose will be discussed as part of the versioning

implementation (chapter 4).

3.3.3 Process History

Process History, as mentioned, is stored in the HistoryMap table. This table as-
sociates a Material with an Event. For efficiency, the Result, Date, and Workflow
identifier are also stored. This allows the system to generate statistics about the num-
ber of Materials processed in some time frame or the number of Events containing

Result.

3.3.4 RDBMS Dependencies

The dependencies on the RDBMS implementation are limited to

e The schema. Different database systems have slightly different Data Definition
Languages. Consequently, we must write a schema for each database system.
The correct schema must be used when the database is prepared for use with
the workflow system. After this one-time event, the different schemas are not

relevant.

e The database connection. Different database systems have slight differences in
the code required to make a connection to the database. This problem can be
handled in several ways by encapsulating the database dependency in a single

class or method, thus insulating all but a small part of the system.
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3.4 Runtime Engine

We based ur implementation on Sun’s Java Message Service (JMS) specification, a set
of interfaces to describe messaging services. JMS itself provides no implementation;
instead, existing message broker products implement the JMS specification.

We decided to use JMS as the core of the Runtime Engine since it provided many
of the necessary features. Figure 3-3 shows the relation between JMS, the Runtime
Engine, and the user’s Listeners. We prefer a third-party JMS implementation to
a custom message delivery implementation because its authors have have already
addressed reliability and scalability. A third-party messaging service also reduces the
code size of the Runtime Engine.

The authors of JMS implementations have given substantial thought to reliability.
JMS allows messages to be delivered in several modes, one of which provides guar-
anteed message delivery. Once the JMS implementation has accepted a message for
delivery, it guarantees that the message arrives. JMS also tracks delivery attempts
and marks messages that have been delivered more than once (generally indicating

an error condition in which the first attempt to process the Event failed).

User User ~User
Li st ener Li st ener Li st ener
Wor kf | ow Engi ne Wor kf | ow Engi ne
Li stener S1 Li stener S2
JMS Li st ener JMS Li stener
JM5 Messagi ng Provi der

Figure 3-3: JMS Implementation: Layers of Listeners We implemented the
Runtime Engine on top of the Java Messaging Service. JMS provides the underlying
message deliver to JMS queues. Each queue corresponds to one State in the process.
The JMS Listener for the queue passes the JMS message to the Engine. The Engine
extracts the Event and Material from the JMS message and passes them to all of the
Listeners for the State.

When a Listener at State S1 produces a new Event that will be routed for State S2,
the Engine creates a new JMS message that contains the Event and dispatches that
message to the JMS queue corresponding to State S2.
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The second major advantage of using a third party JMS implementation is that
the authors have given substantial attention to scalability. A JMS message broker
(especially a commercial product) can to handle many concurrent connections and
provide high throughput. In the JMS model, we can receive messages from a broker on
any number of machines. If used correctly, this behavior should allow us to distribute

the computational load of the workflow across many machines.

Messaging Model

JMS provides two messaging models: Point to Point and Publish-Subscribe. In the
Point to Point model, messages are sent to queues. A program can register listeners
for queues. The JMS software invokes listener automatically when messages are
available or the program can poll the queue for messages. Using reliable messaging
and transactions, a message remains in the queue until the receiving program marks
the message reception as complete.

Publish-Subscribe organizes messages into Topics. A message is sent to a topic to
which Listeners can subscribe. A listener receives all messages sent to the topic. A
Listener can even request that the message broker store for later delivery messages
sent when the Listener is not active.

The Publish-Subscribe model seems attractive for our use. We might create one
topic for each State. We would then register each Listener for the State as a Listener
for the topic. The key problem with this model is the failure behavior. Consider
the case where several passive Listeners and one active Listener are registered for a
State. If one of the Listeners fails (in our Java workflow system, this means that
the Listener throws an exception back to the caller), the system must recognize this
problem and stop the processing of the Material. However, JMS does not provide
any convenient way to recall the messages that were sent to the other Listeners for
the State (assuming that they haven’t already been processed). As this violates our
design goal for error handling, Publish Subscribe seems unsuited for our engine.

Another drawback of Publish Subscribe is that it may allow skew in the execution

of the Listeners. Consider a linear progression of States, each with several passive
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Listeners and one active Listener. If the active Listener of the first State is executed
first, it sends an Event on to the next State. Depending on the JMS implementation
and the State of the message broker, the active Listener in the second State may
be executed before the passive Listeners of the first State. Though not addressed in
our design goals or requirements for the engine, this seems to violate the expected
behavior of the system.

The Point to Point messaging model meets our requirements better than Publish-
Subscribe. Each State corresponds to one queue. The engine software registers special
Listeners for each queue. When one of these Listeners obtains a message (either by
being invoked automatically or by polling for the message), it calls all of the passive
Listeners and then the active Listener, if it exists. If all of the Listeners executed
successfully, the system obtains the Event from the active Listener and dispatches
it to the next State. At this point, the work for this State is complete and both
the message reception and message dispatch transactions may commit. If the any of
the Listeners failed, then the system does not execute the other Listeners and can

dispatch the Material off to the appropriate error State.

JMS Implementation Specific Details

The key functionality missing from the JMS specification is an administrative interface
for creating or configuring queues and topics. Consequently, JMS implementations
tend to provide methods to create queues but the methods are not standardized. As
with RDBMS specific code in the storage component, we can wrap the JMS imple-
mentation specific code in one class. Each such class implements a single interface
such that JMS providers all appear the same to the system.

The interface WFEJMSAdaptor provides three methods:

parseArgs allows the using program to pass command line parameters that the
adaptor can use to determine the broker to connect to or the username or

password.

getJMSConnection returns a QueueConnection to the appropriate JMS message
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broker. This encapsulates JMS implementation specific code for connecting to

a broker.

createQueue creates a queue. This is here since to correct the lack of administrative

functions in the JMS interfaces.

These methods mask the differences in JMS implementations; unlike the SQL
adaptor, no getJMSType method is necessary to inform other classes what provider

is being used.

SQL Implementation Specific Details

To mask the differences between SQL implementations, the workflow engine also
defines an SQL adaptor interface, WFESQLAdaptor. This interface provides three

methods:

parseArgs allows the using program to pass command line parameters that the

adaptor can use to determine which database to connect to.
getSQLConnection returns a java.sql.Connection object to the appropriate database.

getSQLType returns a string describing the type of SQL database to which the

connection was made.

Note that this does not cover all of the SQL implementation-specific behaviors of
SQL databases that we have described. However, this is sufficient for the workflow
engine; the engine itself has no direct interaction with an SQL database. Instead, the
engine uses the storage component for all database interaction. The engine instan-
tiates the storage component, passing the Connection and the string specifying the

database type.

3.5 Workflow Design Tool

Our system includes a workflow design tool that provides a natural interface to the

process definition and structure. We believe that the most natural representation
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for process structure is a modified flowchart or graph. The structure of the graph
is extremely similar to the low level description except that States are replaced by
widgets. Each widget may represent a simple State or a more complex entity. In figure
2-1, the AlignFail widget represents a simple State whereas the blocking widget is a

high level widget that requires translation.
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Figure 3-4: Process Design Tool Screenshot The process design tool uses two
windows. The window shown here to the left allows the user to select a widget
factory. Factories for simple States, initial States, terminal States, sub-workflow
calls, and workflow returns are shown.

The window to the right contains the process design area. This process consists of one
initial State, “first,” and two terminal States, “second” and “third.” The Listeners
at “first” produce “Trylt” Events.

User-provided factory classes produce the widgets that can be placed in the graph.
In figure 3-4, the window on the left shows the factories. The window on the right
is the process design area. The factories may control the visual appearance of the

widget by setting an icon or renderer. We based the process design area on the
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JGraph! package.

Each factory may provide a set of filters. The filters from all factories are applied
in an arbitrary order to the objects representing the high level description. The
filters for a factory reduce that factory’s widgets from the high level description to
a low level description. When all factors have been applied, the high level process
description has been transformed into a low level description. For several examples

of this method, see section 3.6.

3.6 Implementing Translation

We have claimed that our core Workflow System supports complex features while im-
plementing only a simple process description language. Successively applying the fil-
ters provided by the high level widget factories reduces high level features to their low
level implementation. We now provide several examples of this process to demonstrate
the implementation of sub-Workflows, Workflow chaining, blocking, and scheduling,

and non-determinism in choosing the next Step.

3.6.1 Sub-Workflow

One stated requirement for the system was the ability to nest workflows to allow
workflow B to appear as a Step of workflow A. In our system, this can be accom-
plished by writing a Listener, call it Dispatcher, which sends Events to another work-
flow. We provide parameters to the Listener to tell it the name of the workflow
(and perhaps the name of the initial State) to which the Events are to be sent. The
terminal States of the sub-Workflow contain a Listener that returns Materials to a
super-workflow if one exists. To support this inter-Workflow Material passing, we
make three small additions to our system: an explicit Workflow Instance interface, a
means by which a Listener can obtain a Workflow Engine instance, and a means by

which a Listener can obtain a Workflow Storage instance. Listeners may now imple-

1JGraph can be obtained from http://www.jgraph.com
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ment AcceptsWorkflowEngine and AcceptsWorkflowStorage to indicate that the
Workflow Engine should provide the appropriate object to the Listener. We provide
a standard Listener that uses WorkflowStorage to examine the WorkflowInstance
object and uses the WorkflowEngine to dispatch Materials and Events back to the

calling workflow.

Dispatch to Sub-Workflow

To dispatch a Material from a parent Workflow to a sub-Workflow, we use a passive
Listener that accepts runtime parameters to specify the target Workflow and uses
the Workflow Engine to dispatch the Material. An alternate might would rely on an
external program to poll the appropriate State of the parent Workflow and perform
the dispatch as Materials are available. The Dispatch Listener potentially provides

better performance and does not increase our reliance on external programs.

Return to Workflow

As with the dispatch, we choose to implement the return with a special Listener.
However, this Listener cannot obtain the identity of the Workflow to which it must
send the Material via runtime parameters as many parent Workflows could dispatch
Materials to the same sub-Workflow. The Listener might examine the Material’s
History using a Workflow Storage object, but examining the History will be error-
prone if several Workflows have processed the Material in parallel.

To correct this deficiency in our system, we add an object to represent a Workflow
Instance. The WorkflowInstance interface (and corresponding table in our persistent

storage managed by the WorkflowStorage) has the following attributes:

InstancelD an internal identifier for the instance in the persistent storage.
Workflow a pointer to the WorkflowDescription of which this is an instance.

Parent a WorkflowInstance of which this instance is a child.

We also add a mapping between WorkflowInstance and Material to our storage

that works in the same was as the Material to State mapping. Finally, we add a
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Source field to Event to store the identifier of the WorkflowInstance in which the
Event took place. By setting the Parent field on a call to a sub-Workflow, the
terminal Listener of the sub-Workflow can easily determine the return target (much

as in a procedure call stack).

Our system can now maintain the information necessary to nest workflows. We
must now determine how this information is to be updated and accessed. First,
we add two methods to the WorkflowStorage interface. The first method takes a
Material and a WorkflowDescription (and an optional Source that we will describe
later) to create a new Workflow Instance. The second method returns the current
Workflow Instance for a specified Material and WorkflowDescription. For efficiency,
we provide two versions of these methods. One version returns WorkflowInstance

objects whereas the other returns the identifiers for the objects.

Ideally we would like to minimize the role of user code in maintaining the Source
field while still making it available for use. Consequently, our implementation of
the runtime engine sets the source field and ensure that it is passed between Events
without intervention from user code. When an initial State receives an Event, the
system automatically creates a WorkflowInstance. In the remaining States, the system
ensures that the WorkflowInstance in the outgoing Event is the same as that in the
incoming Event. The system does not perform any checking if the Event was received

from an external program, although this checking would not be hard to implement.

The creation of new WorkflowInstances at the initial State of a workflow cannot
be done blindly. We use two cases. If the incoming Event has no Source set, then
we create a new WorkflowInstance without a Parent. If the Source was set, then we
change the Source to be a new WorkflowInstance whose Parent is the old source.
This is the case where the Event has been sent from another workflow. By setting the
Parent, we have stored the necessary information to send the Material and terminal

Event back to the correct workflow.
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3.6.2 Workflow Chaining

Workflow chaining reuses the Dispatcher Listener used for sub-Workflows. A third
runtime parameter instructs the Dispatcher not to set the Parent field of the new
WorkflowInstance. When the Material reaches a terminal State of the second Work-

flow, the terminal Listener cannot return the Material to the first Workflow.

3.6.3 Blocking and Scheduling

Blocking and scheduling both affect the timing of a Material’s progress through a
workflow. Scheduling describes any time-based influence on the progress; blocking
is a specific case of scheduling in which a Material is held at a certain point until a
precondition is met.

Our implementation of scheduling uses a special Listener, an external data store,
and an external program (figure 3-5). The Listener adds information to the exter-
nal data store about the Materials received. The external program polls the store
periodically. If any of the Materials listed meet the scheduling criteria, the program
dispatches them back to the Workflow system for further processing.

A simple form of scheduling allows Materials to proceed based on the time of day.
For example, we might wish to run computationally intensive Steps at night. The
Listener adds the Material and a desired time to the external store and the external
program (perhaps run from the Unix cron program) polls the store and runs Materials

as their specified time is reached.

3.6.4 Non-Determinism

A real-life process may involve ambiguity or parallel actions. To model these pro-
cesses, we use a set of States in the Workflow. As shown in figure 3-6, we can model
ambiguity in which Step should be performed by adding a pseudo-Step whose sole

purpose is to choose which real Step should be performed next.
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Figure 3-5: Implementing Blocking or Scheduling To implement blocking or
scheduling, we translate the block point into a State containing one passive Listener.
The Listener adds the Material to an external data store. An external program
examines the store and, at the appropriate time, dispatches the Material back into
the system.
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Figure 3-6: Using Extra States to Model Nondeterminism Special rules are
sometimes necessary to route Materials through a workflow. In this example, three
Steps are possible after State waiting, corresponding to a user choosing which to
perform next. To model this situation, we have added three States, one corresponding
to each possible action (A, B, or C). The Listener at waiting accepts input from the
user to indicate which action is being performed and then routes the Material to the
appropriate State.
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Chapter 4

Versioning

Workflow processes inevitably change. The changes to a process definition might alter
the structure of the workflow process by adding, removing, or rearranging States. The
changes might modify the Listener code or the changes might alter the parameters
passed to the Listeners at a State. Our system must accommodate those changes. In
this chapter, we first present the types of changes in more detail and then discuss the
modifications to our design necessary to accommodate change and the implementation

of those modifications.

4.1 Types of Changes

Three types of changes can be made to a workflow. The first type changes the
structure of the workflow process. The change may add, remove, or rearrange States
or transitions in the workflow. Both the old and new process definitions can be
represented using the Workflow description classes that we have previously described.

The second type of change is to the parameters passed to Listeners at run time. As
with structural changes, our workflow description classes can describe both versions.

The third type of change does not modify the structure of the workflow but rather
changes the code that implements the Listeners, Materials, or Events. Our framework
cannot represent this type of change. We can create a new copy of the workflow

description but have no way to indicate that different versions of a class should be
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used.

We must also consider the scope of the changes to be made. Some changes alter
the process, parameters, or code for all Materials currently in the system while other

changes apply only to a subset of Materials.

4.1.1 Structural Change

Workflow designers frequently make structural changes to reflect changes in a physical
process. For example, researchers may replace a “dead end” that collected Materials
that failed a quality check with Steps to work around the failure as soon as they

develop a procedure for working around the failure (figure 4-1).

Ready Ready
checkQual ity checkQual ity
ok fail ok fail
Qual i t yOK QualityFail QualityX QualityFail
\l/pr ocess process ret ry
V

rest of

rest of wor kf | ow

wor kf | ow

Unsal vagabl e

Figure 4-1: An Example of Structural Change to a Workflow Process Two
workflow process definitions. The definition on the left is the original version. The
definition on the right has been modified to include a Step to recover from the first
failure of a quality check.
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4.1.2 Parameter Change

The Workflow system user may change the parameters to make small adjustments to
the implementation of the process without changing the code. Since the parameters
that the system passes to Listeners are stored in the same way as the process structure
(by the Workflow Storage Component), changes to parameters can be stored and
handled in the same way as structural changes.

In the process of figure 4-1, the Listener at Ready that produces the checkQuality
Event might accept parameters to specify the maximum percent of contaminant in a
sample or the minimum signal intensity. Changing these parameters would not alter
the structure (i.e., the image on the left would represent the structure before and

after the change).

4.1.3 Code Change

The workflow designer may need to change the code for the workflow to expand the
data tracked (by adding fields to a Material or Event class) or to change an algorithm.
For example, the researchers using the system may wish to use an improved algorithm

for examining instrument output.

4.1.4 Global or Limited Changes

Global workflow changes apply to all Materials in the system. Materials may need
to be migrated from old States to new States, and all Materials should now proceed
through the new process. New Materials in the workflow will also follow the new
structure and use the new code. This kind of change most frequently occurs to
correct a bug in the code or process to minimize the number of Materials processed
incorrectly.

Global changes can be implemented by shutting the system down, running the
migration tool to move Materials from old States to new States as necessary, and
then bringing the system up again with the new process definition and new code.

Limited changes do not alter the process or code for all Materials. Instead, the
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new process and code apply to some subset of the Materials. For example, the new
process might apply to Materials that enter the system after a certain date, reflecting
a change to the physical process that will be made. In other cases, the change to the
process applies to a subset of all Materials to reflect different categories of Materials.
Consequently, a limited change means that multiple versions of the process and code
may be active simultaneously. For example, two departments at a university might
wish to modify their admissions procedures such that each department uses a different
selection algorithm where they had previously used the same algorithm.

A limited change can be made by giving the new process definition a version
number to distinguish it from old definitions and directing new Materials to the new
process definition. However, using the new code is not as simple. If the workflow
designer created a modified version of a Listener, Material, or Event class, the Java
Virtual Machine (JVM) would not allow both versions of the class to be active at the
same time because it cannot handle two classes with the same name. For example,
consider a version 1 of the process that uses a Listener of class L. For version 2, we
modify L. Simultaneously running both version 1 of the process and version 2 would

require two different implementations (the two different versions) of L.

4.2 Design

To allow our system to accommodate structural and parameter changes, we add
a version attribute to WorkflowDescription. We now require both a name and
version to uniquely identify a description. A key benefit of this approach is that
the name attribute does not change. While the system internals only use an internal
numeric identifier and hence not care about the name, users of the system will realize
that the two definitions represent variations of the same process. Furthermore, users
can synchronize the version numbers with external resources such as information in
a source control system.

Each version of the description can contain a different structure and different

parameters. This allows the storage and runtime components of the system to operate
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the different versions of the same workflow at the same time by simply viewing them
as separate processes.

To allow multiple versions of a class to be used in different workflows, we add ver-
sion attributes to ListenerDescription and to Storable objects. The ListenerDescription
knows the class name and version of the code that is to be used. At runtime, the sys-
tem uses the name and version to locate the appropriate class. The system provides
a tool to the user that accepts normal Java source code and prepares it for use with
the system.

The design described thus far allows the system to store definitions for multiple
versions of a workflow and to enact multiple versions of a definition at once. However,
these considerations are not sufficient to perform complete History reporting. Conse-
quently, we add Pred and Succ fields to WorkflowInstance. When the system ends
process instance x and replaces it with process instance y (because process definition
X is being replaced by Y and the Material should now proceed through Y), z’s suc-
cessor field is set to y and y’s predecessor is set to z. This allows reporting software
to associate the Events associated with a Material with the particular version of the

workflow under which they occurred.

4.3 Implementation

Adding version attributes to the workflow description classes is trivial. Similarly
modifying the storage component also requires little effort.

Accepting versioned code is more difficult. A simple approach would keep copies
of different versions of the Java .class files as necessary. However, Java cannot
load multiple versions of the same class, so there is no simple way to use multiple
.class files for the same class. Our solution to this problem rewrites the Java source
files, producing new source files that the user can compile and use without any further
intervention. We will describe the details of our approach and then discuss alternative
solutions.

Our system runs a source to source translation on the user’s Listener, Material,
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and Event code and produces a mapping from the input class names to the output
class names and versions. The output names and versions uniquely identify the
input revision of the source code. Our workflow deploy tool automatically inserts the
new class names and versions into the workflow description before writing it to the
Workflow Storage. The Workflow Engine and Workflow Storage require only slight

modifications to use the rewritten classes.

4.3.1 Rewriting

The rewriting process begins by identifying all files that need to be rewritten. Our
implementation requires that all such files have a .vers extension to distinguish
them from the . java files that are produced. This is not a requirement of the system;
rather, it is a convenience to the user. The compiler sees only the . java files produced
and ignores the input source files. Once the input set of .vers files has been identified,
the files are parsed using the JParse! package to identify all classes defined in the files.

Having identified all of the files and classes to be rewritten, the rewriter must
generate a unique name for each output file. It first uses an adaptor for the revision
control system to discover the current version of each file. If the files do not reside in
some revision control system, the rewriter assumes a version of “1.0”.

Knowing the file name and version, the rewriter generates a unique name for the
new file. Simply using the old name and the version does not suffice; the rewriter
could be run multiple times on the same version of a file and the system cannot
merely overwrite the old file with the same version. Consider a case where the code
for Listener class L refers to the Material class M that it will process. Assume that
both files have version 1. The system generates the unique names M_1 and L_1 and
writes the output files such that L_1 refers to M_1 and L_1 refers to M_1 and deploy
the resulting classes. If the developer now revises M to version 2 but does not modify
L, then rewriting would produce a new class L._1 that refers to M_2. Since the system

had previously deployed a class named L_1, this rewriting scheme does not work. The

1 JParse can be obtained from http://www.ittc.ukans.edu/JParse/
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rewriter generates truly unique names by generating a unique suffix for the filename

as show in figure 4-2.

wilow vers. class version | name
1 L 2 L2
1 M 3 M_3
2 L 2 L2
2 M 4 M4

wilow vers. class version | name
1 L 2 L21
1 M 3 M.3.1
2 L 2 L22
2 M 4 M4

Figure 4-2: Mapping Class Name and Version to New Name. Both tables show
a mapping from class name and version to the new class name for two versions of a
process definition. The top table shows an incorrect rewriting in which both versions
of the process attempt to use L._2. The bottom table shows a correct rewriting in
which one process version uses L._2_1 and the other uses L_2_2.

The rewriter generates a unique suffix for the current version of each file by trying
numbers starting with one until it obtains a unique file name. In the preceding
example, this would have produced files named L_1_1 and L_1_2. The new file name
consists of the old file name, the version, and the unique suffix, or nonce. Each name
is added to a hashtable that maps old file names to the new class names and old class
names to new class names. If a single source file defines multiple classes, then the
same version and suffix apply to all of the classes in that file.

The system now makes a second pass over each of the files. At each point in
the syntax tree for each file, the rewriter replaces the names of classes with the new
names that it has generated. The rewriter then prints the modified syntax tree to a
file with the appropriate new name.

The key limitation of our rewriting process is that it can only rewrite class names
that it can find in the syntax tree. This includes class declarations and variable
declarations. The notable case in which our rewriting fails is when a class is referred to

by reflection. For example, if code were written using the Class.forName() method

63



to obtain the Class object for the class of a specified name, our rewriter would not see
the name of the class embedded in the String argument to forName (). While we might
be able to create a special case in our code rewriting to handle the straightforward use
of Class.forName(), it is not worthwhile to statically find and rewrite all code that
might refer to a class name?. This limitation of our rewriting means that programmers
cannot use reflection to refer to class names that might be rewritten. Although this
limits the user code to a subset of Java, we do not feel that the limitation will be a

burden on programmers.

4.3.2 Workflow Deploy

Once the source code has been rewritten, the deploy tool updates the workflow de-
scription to use the current version numbers produced by the rewriting process. The
deploy tool then writes the description to the persistent process definition storage.
Finally, it produce a modified version of the UI’s representation that is identical to
the input except that the version attribute of the Workflow has been incremented.

The version increment prevents the user from attempting to store the same version
twice. The disadvantage of this decision is that the process definition storage may
contain many workflow versions that were never used or that the user does not wish to
see. This may be a particular problem during development when the programmer is
constantly modifying the process definition. Although the system does not currently
provide any such mechanism, it would be relatively easy to provide a tool to purge a
particular version of a workflow from the system.

The advantage of automatically incrementing the version is that the programmer
is less likely to overwrite a previous process definition (if the system silently allowed
this to happen). Furthermore, we anticipate that in many cases, the user will want
the modified process definition to be inserted as a new version. Hence, the deploy

tool’s behavior addresses the common use case.

2Consider the case where a call is made to objects for which source is not available. In theory, we
could insert code into the class being rewritten to examine the Java byte code for all called objects.
However, we do not consider this worthwhile for our current implementation.
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4.3.3 Workflow Engine and Storage

To support versioning, the Workflow Engine must use the class name and version
when instantiating Listeners. No other changes are required. The Workflow Storage

must be modified to keep the version attributes. No other changes are required.

4.4 Other Approaches to Versioning

We considered two alternative solutions that do not rewrite the versioned classes but
must find the correct version of the class with some other method. For example, the
user or the system could maintain multiple . class files corresponding to the multiple
versions and use the correct file at the correct time either by running multiple copies

of the JVM or by loading and unloading .class files as necessary.

Multiple JVMs

The system could use different versions of the same class by running multiple copies of
the Java Virtual Machine, where each machine would load a different version. While
this would allow different versions of a class to be used at one time, the Workflow
System or the user would need to store the .class files in different directories and
then instruct the JVM to look in the appropriate places. This approach would either
rely on disk storage managed by the system or require the user to put the files in the
correct places. Asking the user to arrange the files violates our goal of transparency.

Asking the system to manage the files adds a dependency on the filesystem.

Class file loading

The second alternative requires loading and unloading the classes as needed by the
different versions of the workflow being executed. This approach requires modifying
the Java class loader and synchronization between the system threads that handle
Events to ensure that the correct version of the class is loaded at the correct time.

This solution also requires the .class files to be kept somewhere in which the system
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can find them, creating a file system dependency.
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Chapter 5

Potential Features

This chapter proposes several features for our workflow system that we have not yet
attempted to implement. The first feature adds declarative constraints to the Work-
flow description. The second feature annotates the Listeners, Events, and Materials
to ensure that all paths through a Workflow process provide the data required by the

Listeners. We also propose an interface to other languages.

5.1 Constraint Checking

Constraint checking in a Workflow System prevents a transition if some value or prop-
erty violates the constraint. By allowing a Workflow designer to provide constraints,
the system can prevent errant data from propagating.

A frequent source of problems in workflow systems is that invalid data enters the
system and cannot be easily removed. All later work with the data in the system must
take into account the fact that some data is invalid. For example, a user might might
enter incorrect data while transcribing information from a handwritten source or an
off-by-one error might cause the wrong file to be read, misidentifying the tissue sample
that is to be examined in a laboratory for signs of cancer. If the error propagates,
incorrect information might be sent to a patient awaiting the lab results. Constraint
checking might prevent this type of error if the intended Material meets some criteria

that others are less likely to meet, for example having a “cancer suspected” attribute

67



set.

The most likely source of the constraints is declarative statements from the devel-
opers. It may also be worth investigating automatic constraint detection that might
detect anomalous results [6, 3].

Constraint checking has two uses. First, it will help developers identify bugs.
Invalid data enters a system because a developer has made a mistake: data might
be misformatted, values might miscalculated, or the wrong data file might be read.
Constraint checking catches these errors before they propagate. This sort of checking
should detect problems primarily during testing, but might catch obscure cases during
actual use.

The second use of constraint checking is to detect user errors. The constraints
written by a developer should accurately reflect his assumptions about the system.
If a user errs and provides incorrect data, it should be flagged and rejected. In
addition, constraint checking might prevent “creative” uses of a system in which a
user attempts to enter some new form of data or results. While this may work in the
short run, it often leads to problems when the system contains data that violates the
developers assumptions. It might be interesting to apply current constraint checking
and invariant detection techniques to user-supplied data.

A key component of the constraint handling will be the manner in which constraint
violations are handled. The system will probably need to have different levels of
constraints. Some will cause fatal errors, preventing an action from taking place.
Others should provide a warning so that a user might have a chance to double-check
an entry before it is committed. Rejection of user actions must be done with care so
as not to alienate or offend users.

The Workflow System might implement constraint checking as another high level
feature that it translates into the existing low level features of the Workflow Engine.
The translation might add a State for each set of constraints and route Materials
that do not meet the constrains into a special error State. Figure 5-1 illustrates the
check that a tissue sample be marked as “cancer suspected” before being examined

for signs of cancer.
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Figure 5-1: Constraint Checking as a Translated Feature Before undergoing
a laboratory process to look for signs of cancer, a Material must have the “cancer
suspected” attribute set. The process developer has implemented this as a constraint
check. The diamond indicates a constraint check in the high level description. The
translation adds two States. The first State contains a Listener that checks the
constraint. If the Material is valid, the Listener assigns the “ok” Result and the
Material proceeds through the Workflow process. If the constraint check fails, the
Listener assigns the “fail” Result and the Material will go to the second added State,
“failed constraint.”
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5.2 Data Flow Analysis

A common problem in information management systems is that step ten in a process
depends on data produced by step two, but some instances of step two fail to initialize
certain fields of the output Material. By the time step ten fails or produces incorrect
results, obtaining the missing data may be very difficult. Consequently, we believe
that a static dataflow analysis could identify paths through a workflow process that
fail to meet the criteria provided for each step along the path.

As with our constraint checking scheme, we envision a system of annotations in
which the code for each Listener can declare the Material and Event fields that it
requires and the fields that it initializes or modifies. A static checker (used either
when the Workflow is deployed or upon startup) can verify that all paths through the
workflow meet the requirements for each Listener along the path.

We might extend this system by using a static analysis of the Listener code to
generate the “requires” and “provides” statements. We might also use a dynamic

check of the output of each Listener to ensure that it conforms to its specification.

5.3 Interfaces to Other Languages

Our current implementation of the workflow system only provides a Java API. Provid-
ing an API, or at least a gateway, to another language should be relatively straight-
forward.

The first step is to define an object transfer protocol between the two languages.
Several forms of Object to XML serialization exist and should allow for easy transfer
of the object data.

Rather than providing a complete API to the other language, we envision a gate-
way that accepts XML messages. The message will contain the serialized Event (and
Material) and information necessary to route the message. The gateway will dese-
rialize the XML message into the Java objects and then dispatch them using the

WorkflowEngine interface.
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Chapter 6

Conclusion

A user of our system first invokes the process definition tool, a graphical user inter-
face, to create a flowchart-like description of a process. This high level description
may include complex features packaged and distributed by anyone familiar with the
system. Having described the process structure, the user writes or borrows (from
other Workflows) the code to implement the Listeners, Events, and Materials. Fi-
nally, the users runs the deploy tool to rewrite the source code, translate the high
level process description to a low level description, and store the low level process
definition in the system’s persistent storage. The user can now start the Workflow

Engine and submit Materials to the process.

6.1 Evaluation

We judge our system by whether the final product meets the design requirements and
by whether users agree with our assessment. We claim that our system meets our
design goals; however, we do not have user evaluations to corroborate this claim.
Our first major design goal was to implement complicated, high level functions
with a minimal runtime engine and translation. By demonstrating implementations of
blocking, sub-workflows, chaining, and non-determinism, we showed that translation
works. We anticipate that users can implement other high level features without

modifications to the system.
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Our core Workflow Engine implements few functions and consequently remains
small compared to other systems. Its small size means that users must write more
code. In particular, the high level widget factories must implement more complicated
filters to translate high level features into the low level description. In practice, this
does not pose a problem since the filters must be written only once and the factory
can then be shared by many users. Furthermore, users may also reuse the Listeners
that they have written.

Our second major goal was to handle changes to user code in a nearly transparent
manner. Our process for deploying Workflow processes with versioned code meets
this goal; the user provides standard Java source code and a process definition. The
system handles versioning with no other interaction.

Thus far, the only use of our Workflow Management System’s tools (process de-
sign tool, deploy tool, runtime engine, and storage) has been to create and run test
processes. One such test process is shown in Appendix B, which describes the results
of our performance testing on the system. We have also created a variety of small
processes to test our high level features. Our experience shows that the tools work
as anticipated, providing and easy means to define, deploy, and modify processes.

However, we look forward to feedback from other users of the system.

6.2 Contributions

We have presented the design and implementation of a Workflow Management Sys-
tem that implements high level features using a simple core and that accommodates
changes to process definitions and user code. This work claimed that high level
features could be implemented with the minimal set of primitives provided by the
Workflow Engine. The implementations of common features such as sub-workflows,
workflow chaining, blocking, scheduling, and non-determinism support this claim.
Our system also provides a transparent support for multiple, simultaneous versions

of a workflow process.
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Appendix A

Workflow Storage Schema

Below we include the schema used with the Oracle implementation of the storage
engine presented in section 3.3. The tables presented here correspond closely to the

workflow description objects and to the process State and History information.

-— sequence for generating unique IDs
create sequence WorkflowSequence increment by 1;

-- represents a version of a class
create table Class (
internallID integer primary key,
ClassName varchar(200) not null,
Version varchar(20) not null,
unique (ClassName, Version)

)

create table ClassMap (
ObjectID integer primary key,
Class references Class,
unique(ObjectID, Class)

-- A schema for storing workflows in a relational database
-- corresponds exactly/very closely to the Workflow, State, EventDesc,
-- and EventResult classes in org.biojava.lims

create table Workflow (
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)

Ccreate

create

)

internallID integer primary key,
Name varchar(40) not null,
Version varchar(20) not null,
unique (Name, Version)

table WFState (

internallID integer primary key,

Name varchar(40) not null,

Workflow integer references Workflow,
IsInitial integer,

IsTerminal integer,

unique (Name, Workflow));

table StatelListener (

ListenerID integer primary key,

State integer references WFState,
ListenerClass integer references Class,
Active integer

-- actual properties

create

create

)

create

)

Ccreate

table Properties (

Listener references Statelistener,
PropName varchar(100) not null,
PropVal varchar(200));

table TransitionDesc (

internallID integer primary key,
SourceState unique references WFState,
EventClass integer references Class

table TransitionResult (

TransitionDesc integer references TransitionDesc,
Result varchar(40) not null,

State integer not null references WFState,
unique(TransitionDesc, Result)

table WorkflowInstance (

InstancelID integer primary key,

WorkflowID integer not null references Workflow,
Parent integer references WorkflowInstance,

Succ integer references WorkflowInstance,
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Pred integer references WorkflowInstance);

create table InstanceMaterialMap (
InstanceID integer not null references WorkflowInstance,
WorkflowID integer not null references Workflow,
MaterialID integer not null);

-— Now schema for the runtime data structures
-— We need a table for state<->material mapping
-— and a table for history<->material mapping

create table StateMap (
MaterialID integer not null,
-- don’t need this since a State is in one workflow and workflow + Mat
-- defines the Instnace
- InstancelD integer not null references WorkflowInstance,
StatelD integer references WFState

)

create table HistoryMap (
-- material and event should probably both reference ClassMap
MateriallID integer,
EventID integer,
TransitionID integer not null references TransitionDesc,
-- don’t need instance since it is defined by the MateriallID and WorkflowID
- InstancelID integer not null references WorkflowInstance,
Result varchar(100),
EventDate date,
WorkflowID integer references Workflow);
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Appendix B

System Performance

One strength of our design is that much of the computational work can be distributed
across several machines to increase the total system throughput. An ideal system’s
throughput would scale linearly with the number of machines added to perform the
computation. In practice, the system throughput will be limited by the fact that the
JMS server and SQL server must process each message. Since our system is not a
commercial product, its performance characteristics are not critical; however, we wish
to show that our system’s design is reasonable and can handle a non-trivial load.

We performed some simple tests to characterize the performance of our system.
Our test process, shown in figure B-1 contains five States and four Steps. An external
program performs one Step.

Our test setup allowed us to measure the system’s performance at four tasks:

1. Adding Events/Materials to the system from an external program to the initial

State A.
2. Processing Events with the passive Listener at State A.

3. Retrieving Events from A, processing them in an external program, and return-

ing the Events to the system for dispatch.

4. Dispatching Events to B and then processing them in the remainder of the

workflow.
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Figure B-1: Sample Workflow for Performance Testing The first State A has
one passive Listener that prints a simple text message and no active Listeners. B
has one active Listener that dispatches the Material to either C or D by choosing a
Result at random. C and D each have one active Listener to pass the Material on to
State Done. We wrote an external program to process Materials in A and pass them
to State B.

All of our Listeners performed simple computational tasks such that the bulk of
the work being performed by the system is the overhead of processing Events. We
hoped to get some idea of how the system performance would scale as we processed

more Events and attempted to process Events in parallel.

B.1 Dispatching Events to the Initial State

Our first test attempted to establish a baseline for the other tests. We ran one copy
of the workflow engine to process Events that were in the system and one copy of
the program that fed Events to State A. The program inserted 100 Events. The two
relevant metrics are the time required to insert the Events and the time required to
process the Events. Several repetitions of our test showed that the wall-clock time
required to insert the Events was just under 90 seconds. Processing the Events also
required approximately 90 seconds.

The second test ran three copies of the Event insertion program in parallel with

just one workflow engine. The three insertions programs each completed in just
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under 90 seconds (for 100 Events each). The workflow engine took much longer to
process all of the Events. This indicates that the JMS message broker was acting as a
buffer for messages as expect and scaled from one to three writers with no significant
performance degradation. We also see that the system seems to have high latency
per message (almost one second) but high throughput. A third test using five writers
and one engine confirms these observations. In all cases, the total load on the system
was relatively small; as observed with the top program, system was not memory or
CPU bound.

The fourth test ran two copies of the engine and one copy of the Event insertion
program. As before, the insertion program completed in about 90 seconds. The
two copies of the engine finished handling the Events in about 90 seconds as well
(their completion time is clearly lower-bounded by the runtime of the Event insertion
program). A test with four engines and five insertion programs confirmed this result.

The table below summarizes these results. In each row, we show the number of
Event insertion programs, the number of Workflow engines, the time in seconds each
insertion program took to complete on average, and the average time in seconds each

Engine needed to finish processing Materials. Each insertion program inserted 100

Events.
# inserters # engines | insert time process time
1 1 90 90
3 1 90 283
5 1 90 520
1 2 90 90
5 4 90 130

From these results, we conclude that the JMS messaging service has a high latency

and high throughput. It also buffers messages as we would expect.

B.2 External Program

The second set of tests involved an external program to process the Materials in State

A, which are then passed through the remainder of the workflow. In each case, 100
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items were processed. These tests also support the inversely proportional relationship

between the number of engines running and the time taken to process the Events.
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