
From Developer’s Head to Developer Tests
Characterization, Theories, and Preventing One More Bug

David Saff
MIT CSAIL
saff@mit.edu

Abstract
Unit testing frameworks like JUnit are a popular and effec-
tive way to prevent developer bugs. We are investigating two
ways of building on these frameworks to prevent more bugs
with less effort. First, characterization tools summarize ob-
servations over a large number of executions, which can be
checked by developers, and added to the test suite if they
specify intended behavior. Second, theories are developer-
written statements of correct behavior over a large set of in-
puts, which can be automatically verified. We outline an inte-
grated toolset for characterization and theory-based testing,
and frame further research into their usefulness.

Categories and Subject Descriptors D.2.5 [Software En-
gineering]: Testing and Debugging—tools

General Terms Verification, Human Factors

Keywords Theories, JUnit, testing, partial specification

1. Introduction
Every software feature is intended to match an “internal
specification” in the head of its developer. How can the de-
veloper ensure that the initial version, and all future revi-
sions, hold to this specification over all valid inputs? Manu-
ally executing the feature and examining the software’s out-
put and behavior can find mispredictions, in which the de-
veloper correctly anticipates valid input, but fails to correctly
predict how the written software will behave.

To prevent mispredictions in future versions, the devel-
oper can write an automated test, including the sample in-
puts and expected behavior, using a testing framework like
JUnit1, which has a simple interface and builds on a devel-
oper’s familiarity with the language of the domain code. This
discipline of developer testing can be effective for a wide
range of skill levels. However, bugs may still linger, through

1 http://junit.sourceforge.net

Copyright is held by the author/owner(s).
OOPSLA’07, October 21–25, 2007, Montréal, Québec, Canada.
ACM 978-1-59593-786-5/07/0010.

oversights: valid inputs that the developer has failed to prop-
erly anticipate. Once an incorrect output for a valid input is
brought to the developer’s attention, it is easy to write a test
for the desired behavior, and debug as before. 2 How confi-
dent can the developer be that enough possible inputs have
been considered, that there are not more bugs lurking in the
unexplored regions of the input space? Manual techniques
based on equivalence classes and code coverage can be ef-
fective, but time consuming, and may need to be repeated
after revisions.

We are evaluating two ways to automatically support the
search for oversight bugs. Characterization executes a fea-
ture many times, and selects individual executions or sum-
mary properties of the code to bring to the developer’s atten-
tion. Theory exploration takes as input general statements
of correctness, written as extensions of traditional unit tests,
and searches the input space for violations.

2. Characterization
A characterization tool initiates or observes many different
executions of a sofware feature and presents a summary
of the feature’s behavior. The developer is responsible for
recognizing which behaviors in the summary are desirable
(and can therefore be enshrined as regression tests), and
which indicate bugs.

A computer can only search a fraction of a potentially in-
finite input space, and a human can only devote attention to a
much smaller fraction. To use these resources wisely, a char-
acterization tool must cleverly choose inputs that are likely
to yield interesting insights into the code’s behavior. The
characterization tools we are investigating use the input gen-
eration facilities of Agitator [1]. Agitator uses a pragmatic
combination of established techniques, including symbolic
execution, constraint solving, heuristics, randomization, and
gleaning constructed objects from the subject code.

Once thousands of appropriate inputs are chosen, exe-
cuted, and the outputs recorded, what should be presented
to the developer? Daikon [2] and Agitator [1] present sum-

2 We do not consider here bugs created through miscommunication, in
which the developer’s internal specification is actually wrong when com-
pared to the user’s needs.



maries in the form of invariants: statements of program be-
havior that have held true over every observed execution,
such as x[0] != null. A bug may manifest itself through
an invariant that doesn’t match the developer’s internal spec-
ification, or through an invariant that should have been de-
tected, but is not.

Alternatively, Agitar’s free JUnit Factory3 service finds
a minimum set of input sequences necessary to maximize
code coverage, and presents each input sequence as a JUnit
test. The potential advantage of this approach is that specific
examples may be easier to examine for correctness than
invariants, and the output language is one the developer is
already familiar with.

3. Theory-based testing
In characterization, the developer supplies no up-front cor-
rectness criteria, but examines the output for potential prob-
lems. By turning this process around, it may be possible to
better use the developer’s time. The developer hypothesizes
once and for all a theory, a desired general property of pro-
gram execution. The developer can verify the theory on a few
hand-picked inputs, but automated tools can explore the in-
put space after every code revision, experimenting with pos-
sible values to find any violations

Automatically verifying specifications is not new. Model-
checking tools can search for violations of specifications
expressed using specialized property objects or logic lan-
guages. Agitator can also search for violations of important
invariants.

However, we believe that to spread the benefits of theory
exploration to more developers, the interface must be very
simple, requiring little additional expertise beyond unit test-
ing. Therefore, we have built on Tillman and Schulte’s work
on Parameterized Unit Tests [4] to provide Theories, a new
testing construct included in JUnit as of version 4.4.

The built-in Theory support in JUnit can verify theories
against a list of data points provided by the developer. A
forthcoming open-source tool, Theory Explorer, can use an
input generator like Agitar’s to find new data points that
violate the theory, and add them to the standard list. For more
about Theories, their uses, and relationship to previous work,
please see our companion paper. [3]

4. Tools
For developers and researchers to compare the usefulness of
characterization and theories to traditional testing discipline,
it is useful to have a set of tools that speak the same visual
and logical language. Therefore, we are developing and col-
lecting a suite of Java tools that build on the standard JUnit
framework to provide these new services. Two of these tools
already exist:

3 http://junitfactory.org

• JUnit 4.4 provides automatic execution of traditional
tests, as well as Theories, when provided with interesting
data points by the developer.

• JUnit Factory provides characterization of software be-
havior as generated JUnit tests. JUnit Factory is free
for software without intellectual property restrictions, or
available as part of the commercial AgitarOne product.

Two are currently in development:

• Theory Factory provides characterization as generated
JUnit Theories, which are based on the invariants discov-
ered by Agitator.

• Theory Explorer explores the input space of JUnit Theo-
ries using an input-generation engine such as Agitator.

5. Questions
With case studies using these tools, we plan to investigate
several questions:

1. What kinds of bugs are more likely to be found through
code inspection and manual testing discipline than through
automatic characterization, and vice versa?

2. What is the time investment for manually creating a
test compared to properly verifying a machine-generated
test?

3. Are developers more likely to recognize a bug exposed
by characterization if the characterization results are ex-
pressed using tests or theories?

4. When is it easier to think through a new requirement
with a single example test than with a general statement
theory, and vice-versa?

5. How useful are theories for a developer generating new
testing ideas, even before using automated exploration?

6. Acknowledgement
This work is supported by an Agitar Research Fellowship.

References
[1] M. Boshernitsan, R. Doong, and A. Savoia. From Daikon to

Agitator: lessons and challenges in building a commercial tool
for developer testing. In ISSTA ’06, pages 169–180, New York,
NY, USA, 2006. ACM Press.

[2] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin.
Quickly detecting relevant program invariants. ICSE, 00:449,
2000.

[3] D. Saff. Theory-infected, or how I learned to stop worrying
and love universal quantification. In OOPSLA ’07, 2007.

[4] N. Tillmann and W. Schulte. Parameterized unit tests.
SIGSOFT Softw. Eng. Notes, 30(5):253–262, 2005.


