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Abstract

The Daikon dynamic invariant detection suite is a system designed to extract spec-
ifications from programs, in the form of information about their variables and their
relationships to each other. It does this by instrumenting the source code of a tar-
get program, which inserts code that directs the program to output the values of its
variables and other information when run. This data is then sent to Daikon proper,
which performs analysis on it and reports invariants about the program variables.
Daikon is a useful tool that can suggest invariants beyond those provable by current
static methods.

While the invariant analysis tool is language independent, the front ends — tools
that instrument of the user code — must be written for every language to be in-
strumented. There is a huge base of pre-existing code written in C/C++ for which
invariants can be discovered. C/C++ are also widely deployed, comprise a large seg-
ment of software currently in development, and are therefore valuable candidates for
analysis. The key difficulty in instrumenting a type-unsafe language like C is that the
instrumented program has to determine what variables are valid, and to what extent,
so that it does not output garbage values or cause a segmentation fault by derefer-
encing an invalid pointer. This thesis details the implementation and performance of
a Daikon front end for the C and C++ languages.

Thesis Supervisor: Michael D. Ernst
Title: Assistant Professor
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Chapter 1

Introduction

Invariants are statements about a program that describe relationships among states
of a program. For instance, they can be used to describe the changes in a variable
between an entry and an exit of a procedure, or to state a mathematical relationship

between two variables that always holds true, over the entire run of a program.

Static analysis techniques can be used to discover some invariants. However,
a sound static analysis is inherently conservative, as it can only output invariants
that are rigorously provable. In addition, these techniques are frequently so complex
that they are limited by what analysis they can complete in a reasonable time bound.
Proofs about interesting properties of the program must be built up from small proofs,
some of which cannot be statically verified because of unavailable code (for instance,
calls to a compiled external library.) As a consequence, static analysis techniques
must often be supplied with a programmer-written specification guaranteeing certain

external conditions to be fulfilled.

In contrast, dynamic analysis needs to be told nothing about the source code or
context of the target program, as it relies only on the data it receives from runs of
the program. The source code is typically modified to generate this data for analysis,
but the analysis step itself does not need to have the source available. Given a suffi-
ciently complete test suite, dynamic analysis can suggest potential invariants about
a program that a static analysis package would have no hope of finding, because they
cannot be mathematically proved. The Daikon dynamic invariant detector [Ern00] is

a language-independent system that can perform this dynamic analysis, when com-
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bined with a language-specific front end.

C/C++ is the language of choice for many developers due to a large installed
base, extensive portability, and the availability of myriad development tools. In
addition, the reference implementation of many algorithms is written in C/C++.
This yields a large body of work in which potential invariants could be discovered,
and suggests that a tool for dynamic analysis of C/C++ would be useful. Dynamic
invariant detection is also useful to maintainers of pre-existing, poorly documented
code. Dynamic analysis using existing test suites can pick up properties of the code
that will help a maintainer understand the way the code is written. As C++ has
been around about 20 years [Str00], and C has been around about 25 [KR88], there
exists a large body of code that could benefit from the existence of a C/C++ Daikon

front end.

However, developing a C/C++ front end is a serious technical challenge. The
data collection required for dynamic analysis involves accessing variables at times
when the programmer is not specifically referencing them. In a type-unsafe language
like C, it is hard to determine what data is accessible, and to what extent the data can
be accessed without performing an invalid access. Accesses to uninitialized memory
that is available to the programmer, but known to the programmer to not be useful,
could cause garbage to be output and diminish the accuracy of dynamic analysis.
It is even possible that a spurious access could cause the running program to crash,
by dereferencing a pointer that contains an uninitialized value, or by accessing far
beyond the bounds of a valid array. This thesis describes a system that performs
C/C++ code transformation to yield a new, “instrumented” version of the code that
can be run to generate data for dynamic invariant analysis. The system also contains
a runtime library that uses various methods of accounting to determine what data
is accessible, useful, and valid, in order to prevent output of uninitialized values or

causing segmentation faults.

Chapter 2 discusses the overall design of the system and the motivations for its
components. Chapter 3 describes the implementation, as well as implementation

challenges, the solutions that were developed to solve them, and features that were
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added to make the system more flexible and useful to users. Chapter 4 contains the
testing methodology used to analyze the correctness and effectiveness of the system,
as well as descriptions of tools developed for these tests and their use. Chapter 5
describes possible future extensions to the system, and Chapter 7 reviews the system

design, and makes conclusions about what was learned over the scope of this project.
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Chapter 2

Technical Approach

Daikon analyzes properties that can be observed over a run of a target program.

There are three main steps in this process:

1. Instrumentation via dfec
2. Trace file generation

3. Trace file analysis

First the target program must be processed by dfec, the executable component
of the Daikon front end for C/C++. dfec does two things. It creates a file referred
to as the decls file, which contains type and scope information about the variables
in the program for later use by the invariant detector. In parallel, it transforms
the input source, adding code to the target program. This whole process is called
instrumentation.

The second step, trace file generation, consists of running the instrumented pro-

gram. The execution of the instrumented program parallels the execution of the

Daikon Runtime
Library

Instrumented Instrumented -
Executable %( dtrace file

(Target Program—{  DFEC

- Potential
Daikon Invariants

Key
D Executable

O Data

Figure 2-1: The full process of dynamic analysis over a C/C++ program.
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original program, except that the code added by dfec is called at specific points in
the program. The function of the added code is to output, at selected program points
in the scope of the transform (typically, the entry and exit points of each function,
hereafter referred to as PPTs), the values of all variables visible from that scope. The
added code must not affect the input-output behavior of the target program in any
other way. The instrumented program is compiled, and run through a test suite, sim-
ilarly to the way a program would be tested for coverage, profiling, or bug detection,
exercising the code thoroughly to get as much and as varied data as possible. During
the run of the program, the code added by the transformation outputs data regarding

variable state to a trace file, also called the dtrace file.

Finally, once the run is complete and the dtrace file has been created, Daikon is
given the decls and dtrace files produced by dfec and the instrumented program
respectively. It examines the values, looking for relationships it can express as poten-
tial invariants. The process of instrumentation, compilation, dtrace generation, and

invariant detection is shown in Figure 2-1.

Daikon takes two files as input: a decls file and a dtrace file. A toy program
and its corresponding decls file and dtrace file are shown in Figure 2-2. dfec
produces the decls file at the time of instrumentation. It contains declarations
of all the different PPTs in the source, and lists what variables will be output at
each instance of that program point. For each variable, it lists the declared type
(the language-specific type of the variable as it was declared in the target program),
the representation type (a language-independent type that Daikon uses internally to
represent program data), and the comparability type (an identifying string used to
separate variables into comparability classes, described in Section 3.9.2). Daikon uses
this data to determine what type of invariants should be looked for, and among which

variables to calculate relationships.

The instrumented program is then compiled and run, and produces the dtrace
file. At each PPT that the program executes, it outputs all the variables that were

declared in the decls file to the dtrace file.
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For each variable in the dtrace file, the name is listed, then the value, then a
“modbit” to indicate the status of the variable at the time of output. A modbit of 0
means it was valid, but unchanged since last output (this is not implemented in dfec,
however). A modbit of 1 means it was valid. A modbit of 2 means it was invalid, and
should not be included as a sample during invariant detection.

The C/C++ front end consists of two parts: the dfec executable and the Daikon
runtime library. The dfec executable is a source-to-source transformation program
that takes in a target program, and outputs an instrumented version of the program.
The Daikon runtime library (“DRT”) implements the functions and classes used by
the code added in the instrumentation step, such as the functions and classes necessary

to track and output the instrumented program’s variables.

2.1 dfec Executable

The dfec executable takes in source code and outputs both instrumented source and
a decls file. Daikon uses the decls file to parse what appears in the dtrace file, so
the set of variables output by the DRT at a given program point must match the set of
variables declared at the same program point in the decls file. The dfec executable
is based on the EDG C/C++ front end [EDGO00]. This tool performs preprocessing
on C/C++, builds an IL (intermediate language) tree of the statements in the target
program, then unparses them again, yielding an output semantically identical to the
input (after macro preprocessing). By modifying the back end, the unparsing step,
code transformations are applied.

dfec’s primary code transformation is adding output calls to the source at specific
program points. The program points chosen for instrumentation are the entry and
exit points of each function. This allows Daikon to recapture preconditions and
postconditions for functions, which is how traditional invariants are stated. When
generating the text for an entry to or exit from a function or class method, dfec
examines the IL tree for variables in scope. For each one, it adds an entry to the
decls file, and outputs a call to a handler function (defined within the DRT) to the

source. These handler functions simply output variable names, values, and modbits
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(trivial.decls)

DECLARE

(trivial.c)

int foo(int arg) {
return arg+l;

}

int main() {
int x = 3;
x = foo(x);
x = foo(x);
return Xx;

}

std.foo(int;)int:::ENTER

arg
int
int
1

DECLARE

std.foo(int;)int:::EXIT1

arg
int
int

2
return
int
int

2

DECLARE

std.main()int:: :ENTER

DECLARE

std.main()int:::EXIT2

return
int
int

3

Figure 2-2: A trivial program and its associated decls and dtrace files.

(trivial.dtrace)
std.main()int: : :ENTER

std.foo(int;)int:::ENTER
arg

3

1

std.foo(int;)int:::EXIT1
arg

3

1

return

4

1

std.foo(int;)int:::ENTER
arg

1

std.foo(int;)int:::EXIT1
arg

4

1

return

5

1

std.main()int: : :EXIT2
return

5

1
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Original Instrumented

int foo(int bar) { int foo(int bar) {

int baz; daikon_output_to_dtrace("std.foo(int;)int:::ENTER\n"),
daikon_output_to_dtrace("\n");
int baz;

|

|

|

|

baz = bar + 3; | daikon_output_int("bar", int(bar)),

|

|

| baz = (bar + 3);

|

Figure 2-3: An example of code inserted at a function entry program point by instrumen-
tation.

to the dtrace file. An example of the code inserted during instrumentation appears
in Figure 2-3.

A second transformation changes variable types from primitive pointer types to
DaikonSmartPointer, a templatized type described in Section 2.2.1. Textually, this
just involves changing all type expressions of the form T * to an expression of the

form DaikonSmartPointer<T> .

2.2 Runtime Library

At instrumentation time, all that the dfec executable knows about variable valid-
ity is what variables are in scope. It cannot determine statically whether or not a
pointer has been initialized, or the extent of a valid pointer, as these can change
from execution to execution. Therefore, its responsibility is limited to keeping track
of the list of variables in scope, and generating calls to output handlers for them at

instrumentation time.

At runtime, however, more information about variables can (and must) be de-
termined. The contents of a variable are not necessarily valid, even if it’s in scope.
The DRT, or Daikon runtime library, contains all the mechanisms for monitoring
the status of user variables in-memory (as described later, in Section 3.5) as well as
outputting them to the dtrace. The instrumentation process connects the statically
available information to the runtime-available information by inserting calls to the

DRT for each variable that needs to be output.
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2.2.1 Smart Pointers

It is infeasible to statically determine size of the contents of a pointer variable, or
even whether the pointer is valid, so runtime bookkeeping for pointers is necessary to
determine how much data to output, or if data should be output at all. In C/C++, a
pointer variable can point to a single valid byte, a block of a thousand bytes, or even
(when uninitialized) to an illegal memory region which would cause a segmentation
fault if referenced. While the dfec executable is capable of statically determining
what pointer variables are in scope, it cannot determine their validity or size. In-
stead, all pointer variables in the target program source are replaced with instances
of a template class, DaikonSmartPointer, adding the functionality that all pointer

variables monitor the validity and size of their contents at runtime.

A smart pointer is a use of the proxy design pattern [GHJV95] that replaces a
regular C/C++ pointer variable [PWO00]. It provides the indirection operators (* and
->), and thus acts transparently as a normal pointer variable would, without affecting
the behavior of the target program. Smart pointers typically add functionality, such
as garbage collection. The smart pointers in the DRT, by contrast, keep track of
the extent to which the memory they point at is valid. The structure of the smart
pointer contains a base field, an index field, and a birthcount field. The index field
is used for the indirection operation, and has the same value as the primitive pointer
it replaces would have had. The birthcount field is a nonce used to keep track of the
number of times the block pointed to has been allocated, and is described in more

detail in Section 3.5.2.

The base field is another pointer that points to the lowest accessible byte in a
memory region (like a block returned from malloc() or a fixed-length array), and
is used to relate smart pointers that point to different offsets in the same memory
region. The base field starts off being the same value as the index. However, when
one smart pointer is derived from another by pointer arithmetic, the base pointer
is passed to the resulting smart pointer unmodified. This allows two smart pointers

who both point into the same contiguous area of memory (like differing indices in an
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array, or pointers into the same string) to share this common base field. This base
field is used as a key to look up memory region information in the DaikonBasemap
structure, described in Section 2.2.2.

The array subscript, addition, and subtraction operators are overloaded, like the
indirection operators. They keep track of the the contiguous stretch of memory
beyond the base pointer that has been addressed by the instrumented program, for
later reference by the output handlers, so that only memory that has been “touched”
will be output. Each of these operators implements the required functionality to
remain transparent, but also takes note of the maximum address referenced beyond

each base, keeping track of this in the DaikonBasemap structure.

2.2.2 Basemap

We want to associate data validity with the data itself, rather than the pointer that
points to it. Any number of pointers can point to the same block of data, and any
information we gain about the block through one pointer, we wish to share with all
other relevant pointers. Therefore, we need some sort of structure that associates the
base field of a smart pointer with a structure containing information about the block.

This need is fulfilled by the DaikonBasemap structure (also referred to as “the
basemap”). Through the basemap, the base field of every smart pointer is mapped
(non-uniquely) to an instance of a class called DaikonPtrInfo (see Figures 2-5 and 2-4).
These structures contain a reference count (the number of smart pointers that have a
base equal to the key), as well as a pointer just past the last “seen” element. (They
contain other fields as well, discussed in Section 3.5.1, but these are implementation
details.) When a new smart pointer is constructed, it creates a new DaikonPtrInfo
struct, setting the refcount to 1, and makes an entry in the basemap associating
the smart pointer’s base field with this new DaikonPtrInfo. With an assignment,
subscript, or addition operation, a new smart pointer is created. The new smart
pointer looks itself up in the basemap, finds the the DaikonPtrInfo made by its
predecessor, and increments the refcount. When each smart pointer is destroyed, the

refcount is decremented. When all references are dropped (i.e. when the refcount
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Original | Instrumented

I
char *X = "HELLO"; | DaikonSmartPointer<char> X = "HELLO";
char *xY = X + 2; | DaikonSmartPointer<char> Y = X + 2;
char *Z = "WORLD"; | DaikonSmartPointer<char> Z = "WORLD";

Figure 2-4: A code snippet that produces the heap layout shown in Figure 2-5.

R L R [T TTTTT]
SmartPointer } T
X | Index ;
Base — : N2
- rPwlolrlulofol [ T[]
SmartPointer 3 N e e
Y |index L ===~ DaikonPtrinfo
1 ! |
Base — 1 N R I refcount 1 DRT
3 max
1 Memory
SmartPointer I e 7—; Area
Z | Index L1 em———Y DaikonPirinfo
Base S refcount | 2
Basemap max

Figure 2-5: Heap layout of the instrumented program of Figure 2-4.

reaches zero), the memory is no longer addressable by the programmer. The DRT
knows that if a new smart pointer is constructed to point to that block, it must
have come from a new malloc() call and that the extent should be reset. Sharing
DaikonPtrInfos between smart pointers that have the same base, although differing
indexes, allows an offset smart pointer to take advantage of information gained when
another pointer, pointing to the same block, updates entries further on in the block,

making them valid.
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Chapter 3

Implementation

This section discusses, in greater detail, the design decisions that were made during
the implementation of dfec. Lower level details of smart pointers and the “basemap”

mechanism are covered, along with features that were added to enhance usability.

3.1 EDG C++ front end

The static analysis required by instrumentation needs a C/C++ front end including
a preprocessor, parser, and semantic checker. Building one from scratch is infeasible
for the scope of this project. This being the case, I decided to build dfec off of an
existing front end.

dfec is an extension of the Edison Design Group’s C++ front end [EDGOO].
The EDG front end performs preprocessing on C++ source, builds an intermediate
language tree (referred to in the EDG source as the “IL tree,” but also known in com-
piler terminology as the Abstract Syntax Tree), and then unparses the IL tree back
to source. dfec consists mostly of additions to the unparsing step, such that when
certain expressions are expanded to text (e.g., a procedure body), instrumentation
code is added (continuing the same example, output function statements are added
before and after the procedure body is output).

The EDG C++ front end conforms to the ANSI C++ standard, accepting ANSI
C++ input and producing ANSI C++ output. As many ANSI C programs are also
ANSI C++ programs, dfec handles a large subset of the ANSI C language (with

the notable exception of C programs that have local definitions of tokens that are
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keywords in the ANSI C++ definition, e.g., bool). Many older C programs are
written in a dialect of C called K&R (for Kernighan and Ritchie [KR88]), which
dfec does not handle. However, a program called protoize [Gui] is free and widely

available which performs conversions from the K&R dialect to ANSI.

3.2 gcc integration

Once code is instrumented, it must be compiled and then executed. This requires
that a C++ compiler, as well as system library headers, be installed on the user’s ma-
chine. Because of architecture differences and the widespread practice of proprietary
extensions to the C/C++ languages, there are very few (if any) compilers and accom-
panying system libraries that are written in entirely ANSI C. Given this limitation,
I chose to target a specific compiler and set of system library headers, to avoid the
massive amount of work involved implementing workarounds for multiple compilers
and multiple sets of system library headers. gcc version 2.95.3 was chosen as the
target compiler because of its widespread availability and the fact that it’s free. dfec
is written to produce instrumented code that can be compiled with gcc, and requires

in fact that gcc be installed, as dfec calls gcc to determine the system include path.

The EDG front end does full preprocessing (expansion of macros and #include
directives) of input source, which is necessary for it to construct its IL tree. A set
of system library headers is necessary to expand the #include directives. System
library headers contain function signatures and non-primitive type definitions that
are necessary for EDG to correctly parse the source. When run, dfec determines
the location of the system library headers by executing gcc -v -E (for verbosity and
preprocessing-only) on an empty source file, and capturing the output. gcc outputs
the location of the system library headers according to its own configuration files, and
dfec incorporates this into its own data structures. Then, when an #include directive

is encountered, dfec can find the appropriate system library header to include.
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3.3 1libc instrumentation

Many C/C++ programs are linked to external libraries such as libc, which may
exist only in binary form. Since dfec needs to modify source code to change prim-
itive pointers to smart pointers, binary-only libraries cannot be instrumented. Any
operation on memory that occurs inside these libraries cannot be tracked by smart
pointers, so without a mechanism that takes into account the semantics of these

library functions, information about these memory blocks can become inaccurate.

Instrumented programs still operate correctly when interfacing with non-instrumented
libraries. dfec transforms all smart pointers into ordinary pointers before passing
them as arguments to uninstrumented functions. However, if a pointer is passed to
an uninstrumented function, and the function modifies the pointed-to data, the DRT
has no way of automatically knowing to what extent the data is now valid. I imple-
mented a workaround for this for certain 1libc functions. dfec does source rewriting,
replacing calls to 1ibc functions with calls to wrapper functions that call the original,

then update the basemap according to knowledge about the effects of the function.

3.3.1 string.h wrapper functions

For each function from the 1libc header file string.h, I wrote a wrapper function
that calls the proper function, then updates the basemap with the valid extent of each
string argument (and occasionally, the return value). The string functions in particu-
lar require this, because almost all of them modify pointed-to data in a way that can
change the valid extent (strcat(), for example, concatenates strings together, and
thus extends the reach of the destination string). Luckily, string functions are also
simple to write instrumented wrappers for, because of the knowledge that the string
arguments will be zero-terminated. See Figure 3-1 for an example of a wrapped string

function.
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DaikonSmartPointer<char> daikon_feel_out_string(const char *s) {
if (daikonBasemap[s]) {
daikonBasemap[s].max_seen =
max(daikonBasemap[s].max_seen, s + strlen(s) + 1);

} max_seen
} 4/—‘
DaikonSmartPointer<char> DAIKON_strdup (DaikonSmartPointer<char> s) { Eﬂ.

max_seen max_seen
r— —
DaikonSmartPointer<char> retval = strdup(s); flolo[\d | |f]olo[\d |
max_seen max_seen
r— —
daikon_feel_out_string(s); flolo[\d | |f]olo[\d |
max_seen max_seen
L L
return daikon_feel _out_string(retval); \f \ 0 \ 0 \ \d \ \f \ 0 \ 0 \ \0\ \
(return value) (9
}

Figure 3-1: Example of a wrapper for the string function strdup().

3.3.2 malloc() and free() handling

The wrapper functions for malloc() and free () (DAIKON malloc() and DAIKON free(),
respectively) are more involved. In addition to keeping track of the valid extent of
heap memory, they must also set up the other fields in the DaikonPtrInfo structure
(see Figure 3-3) that keep track of type information and whether or not the construc-

tor has been called. This is all detailed in Section 3.5.

3.4 Smart pointer implementation

DaikonSmartPointer overloads pointer operators, in order to transparently behave like
a primitive pointer variable would. Each overloaded operator performs the normal
function, as well as recording information in the basemap. An example is given in
Figure 3-2.

The example demonstrates the effects of a constructor, operator [|(), operator

+(), and operator *().
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DaikonSmartPointer<char> p1, p2;

char c;

const char *str = "string";

pl = str;

c =pl[2];

p2 =pl+1;

/* pl.base = pl.index = str;
new basemap entry created:
daikonBasemap([pl.base] = {

modbit = 1,
max_seen = str,
refcount=1

bl

/* pl.operator[](2) returns ’r’,
updates basemap:
daikonBasemap([pl.base].max_seen =
max(daikonBasemap[pl.base].max_seen,
(pl.index+2)+1); */

/* pl.operator+(1) updates basemap:
daikonBasemap[pl.base].max_seen =
max(daikonBasemap[pl.base].max_seen,
(pl.index+1)+1);
p2.base = pl.base; p2.index = pl.index + 1;
p2 constructor updates basemap:
daikonBasemap[p2.base].refcount++; */

/* p2.operator*() returns ’t’, updates basemap:
daikonBasemap([p2.base].max_seen =
max(daikonBasemap[p2.base].max_seen,
p2.index+1); */

/* p2.operator=(NULL) updates basemap:
daikonBasemap[p2.base].refcount—-;
p2.base = p2.index = NULL; */
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1 |modbit
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1 |modbit
—.—  |max_seen
2 [refcount

daikonBasemap([str]

1 |modbit
-~ |max_seen
2 refcount
daikonBasemap[str]
1 |modbit
- |max_seen
1 |refcount




3.5 In-place smart pointer construction

The replacement of primitive pointers with smart pointers yields a subtle difference
that requires careful management — primitive pointers do not require construction,
but smart pointers do, because they are structures, and C++ structures must be
constructed in order to initialize their values. Normal pointer variables that are
declared in global scope, an argument list, or in the body of a function are stack-based
variables. All stack-based pointer variables, once transformed to smart pointers, are
set up to be automatically constructed by the compiler. However, in a low-level
language like C, the heap is not compiler-managed in such a friendly way. A smart
pointer variable that is allocated on the heap will not be automatically constructed

by the compiler.

malloc() and free() are the C functions that allocate and deallocate blocks of
memory on the heap. These blocks of memory can store values of any type, unlike in
higher level languages like Java, where instances of a type are explicitly constructed
as such. In C, there is no such thing as a constructor, so C code generally uses

malloc() to allocate memory for a struct, and then starts using it.

This leads to a problem in instrumented source when a struct has a field of a
pointer type. Under instrumentation, this is transformed to a smart pointer — an
object that requires construction. If instrumented code allocates a block of memory
and then starts treating it as any struct that has a smart pointer field, it could damage
the coherence of the basemap. When a smart pointer is assigned another value, it
decrements the refcount of the old address in the basemap, and if it’s pointing to
a garbage value, it will improperly decrement the refcount for that address. Most
likely, this will decrement the refcount of an unaddressed block below zero, although
it could possibly decrement the refcount of a valid memory block to zero. This could

cause a valid block to be marked as invalid and not be output.

To cope with this, all smart pointers, and structs that contain smart pointers, need
to be explicitly constructed on the heap, and destroyed when they’re deallocated.

This process is performed in three steps — pre-initialization by DATKON malloc(),
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construction and type setup by the DaikonSmartPointer class, and destruction and
deallocation by DAIKON_free (). Sections 3.5.2 through 3.5.4 describe the three steps.
However, first we till take a detailed look at the DaikonPtrInfo structure, which is

used to keep track of memory state.

3.5.1 A detailed look at DaikonPtrInfo

Until now, I have only discussed the refcount and max_seen fields of DaikonPtrInfo.
Figure 3-3 details all the fields in the DaikonPtrInfo structure.

max_seen is, as mentioned before, a pointer to the first byte just beyond the “valid”
extent of the block. refcount is the number of smart pointers who point into the
block (i.e., the number that share the samebase field). The modbit is similar to the
modbit described at the beginning of Chapter 2, but is used slightly differently in this
context: amodbit of 1 means that a memory block is either on the stack, was provided
from outside, or is on the heap and has not been invalidated by DAIKON free() yet;
and a modbit of 2 means that the block was allocated by DAIKON_malloc (), but has
subsequently been DAIKON_free ()d.

bounds is a pointer that is similar to max_seen. It points to the first byte just
beyond a memory region, but the semantics are slightly different: where max_seen
marks off how much of a memory region has been accessed, bounds marks off how
much of a memory region the DRT should ever allow to be accessed. This is not
always known, such as in the case of pointers obtained from system library calls, and
in those cases it is set to NULL. However, in the case of a fixed-length array or a
block returned from DAIKON_malloc (), it is known, and is set appropriately. bounds
is used both to inform the user of illegal accesses by the input program (covered in
Section 3.8.1) and to calculate the number of structs that need to be constructed
in-place (covered in Section 3.5.3). leeway is only relevant when bounds is non-NULL,
and contains the number of bytes on either end of the block that dfec put there for
array padding. Array padding is described in Section 3.8.2.

from_malloc simply denotes whether a block came from a DAIKON_malloc () call.

When it is false, the remaining fields (from malloc, unformatted, birthcount,
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void *max_seen
int refcount
int modbit

™~
T~

=[]

void *bounds

int leeway

bool from_malloc

bool unformatted_block
int birthcount
DaikonDP dest
DaikonCP copy

[p[r]=]o]

Figure 3-3: The DaikonPtrInfo structure.

dest) and copy are unset. These fields are only used on blocks that came from
DAIKON malloc(). if frommalloc is set, then unformatted denotes whether it has
been constructed in-place (a process described in Section 3.5.3). The birthcount
field is used to count how many times a particular address has been returned by
DAIKON malloc(). This birthcount can by compared with the birthcount field of
a smart pointer to see if the block has been free()d and re-malloc()ed since the last
use of the pointer. This comparison (and the need for it) is discussed in Section 3.5.2.

The remaining two fields are function pointers that are necessary to perform op-
erations that depend on the specific type that the block contains. Once the block
has been constructed in-place, dest is set to point to a function that DATKON_free ()
calls to destroy the structs that were constructed. This is described in Section 3.5.4.
Similarly, copy is set to point to a function that overloaded versions of memcpy(),
memmove (), and bcopy() can call to copy a memory region from one location to
another, while ensuring constructors are called when copying memory regions that

contain structures that may have smart pointer fields.

3.5.2 Role of DAIKON malloc()

Psuedocode for the malloc() wrapper function is in Figure 3-4.
When DAIKON malloc() is called, it has no way of knowing what type is go-
ing to be stored in the memory region. However, it does know the block’s size in

bytes. DAIKON malloc first calls malloc() itself, and sets up the normal fields in
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the basemap. In addition, it marks the block as having come from DATKON malloc()
and as “unformatted”, as shown in Figure 3-3. Normally, The refcount field holds
exactly the number of smart pointers that point to the associated block, but in
the case of a DAIKON_malloc()’ed block, it’s incremented by one to represent the
malloc() /free() pair. This is because when the block has been freshly malloc()’ed,
it does not yet have anything pointing to it until the pointer assignment, which
is where the smart pointer takes over. Adding one to the refcount to represent
the malloc () /free() pair keeps the DaikonPtrInfo structure from being considered
“stale”, as DaikonPtrInfos with refcounts of zero are overwritten by the smart pointer

constructors.

birthcount management

DATKON malloc() also sets the birthcount field. The birthcount field is zero for
addresses on the stack, but for every address returned by DAIKON.malloc(), it is
greater than zero. If DAIKON malloc() returns an address that does not have a
DaikonPtrInfo already in the basemap, it initializes the birthcount to 1. However,
if DAIKON malloc () returns an address that already has an associated DaikonPtrInfo,
it increments the birthcount in the new DaikonPtrInfo. This is necessary to keep
dangling pointers (pointers that point to a block that has been free()d) from acci-
dentally becoming valid, simply because the block they point to has been renewed
by DAIKON.malloc(). This newly-allocated block is semantically a different block
than the old one, and dangling DaikonSmartPointers that point to it should not
be considered valid. When a DaikonSmartPointer is assigned or created, it looks
up its associated DaikonPtrInfo in the basemap, and the birthcount field from the
DaikonPtrInfo is copied to the DaikonSmartPointer object’s birthcount field. Then,
when a DRT output procedure tries to output a DaikonSmartPointer’s contents, it
checks to see if the birthcount in the DaikonSmartPointer matches the birthcount
in the DaikonPtrInfo. If they match, it goes forward with output, but if they don’t
match, the pointer contents are output as uninit. This keeps stale pointers (which

could even be a different type than the new block!) from incorrectly outputting
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void *DAIKON_malloc(size_t size) {
void * ret = malloc(size);
if (ret) {
if (daikonBasemap[ret] == NULL) {

/* this pointer isn’t in the basemap yet. */

daikonBasemap[ret] = DaikonPtrInfo
(/*max_seen=*/ret, /* We haven’t seen anything yet */
/*refcount=+/1, /* note! fake refcount must get --’ed by free() */
/*modbit=x/1, /* The memory is valid - */

/*bounds=x/(void*) (((char*)ret)+size), /* - up to this point */
/*leeway=*/0,
/*from_malloc=%/true,
/*unformatted=*/true,
/*birthcount=%/1); /* first time we’ve seen this block */
} else {

/* this pointer was, at one point, in the basemap. */

int oldrefcount = daikonBasemap[ret].refcount;

int oldbirthcount = daikonBasemap[ret].birthcount;

/* If oldrefcount>0, then there are stale pointers still pointing
to this block. We need to add the old refcount into the new one,
so when they get reassigned or go out of scope, their refcount
decrementing won’t break the new DaikonPtrInfo. */

daikonBasemap[ret] = DaikonPtrInfo
(/*max_seen=*/ret, /* ’new’ block - none of it is valid yet */
/*refcount=x/1 + oldrefcount, /* refcount folding */
/*modbit=*/1,

/*bounds=x*/(voidx*) (((char*)ret)+size),
/*leeway=*/0,
/*from_malloc=%/true,
/*unformatted=*/true,
/*birthcount=%*/1 + oldbirthcount);
}
}
return ret;

}

Figure 3-4: Psuedocode for the malloc() wrapper function.

DATKON malloc ()ed blocks.

3.5.3 Role of DaikonSmartPointer

The smart pointer class has a constructor that takes an argument of type void *,
the return type of malloc (). Psuedocode for this constructor is shown in Figure 3-5.
When this constructor is called, it first looks up the block in the basemap to see if
it’s already there, and if so, whether the from_ malloc flag is set. If it is, it knows

that it has to “format” the memory region.
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Since smart pointers are templatized, the constructor for the smart pointer knows
the type of struct (or scalar) that’s being pointed to. The type of the block is not
known at the time DAIKON_malloc() is executed, so all type-aware operations must
be handled by DaikonSmartPointer. The DaikonSmartPointer constructor does the
three type-aware operations: It constructs elements of its pointed-to type in the
memory block, and sets up a type-templatized destructor and copy function pointer
for later, by setting the dest and copy fields in the basemap entry. The first thing the
constructor does is iterate over the memory block, using placement new to construct
each struct in-place. Placement new calls the default constructor for the struct, which
constructs each smart pointer field as well, maintaining coherence. By dividing the
size of the memory region by the size of the type, it knows how many elements fit in
the memory region, and constructs exactly that many.

After the block of memory has been formatted, the basemap entry is marked
accordingly, so DATKON _free () knows that a destructor must be called. The dest field
of the DaikonPtrInfo is a function pointer, which is set to point to a template function
that will iterate over the same block, destroying the constructed fields. The copy field
is also a function pointer, which is set to point to another template function that copies
elements of the template type to another memory region, explicitly constructing the
objects as they arrive in the destination region. See Figure 3-7 for what these functions

look like.

3.5.4 Role of DAIKON free()

When DAIKON_free() is called on a pointer, it calls a method of DaikonSmartPointer
called free_self(). This is to ensure that that the correct block is passed to the
free() system call, even if the index field of the smart pointer points further into
the block. This is a necessary consequence of array padding, which will be explained
in Section 3.8.2.

The free_self () (see Figure 3-6) method performs a few consistency checks with
the associated basemap entry. First, it checks from malloc to make sure that the

block was originally allocated with DAIKON_malloc(). If from malloc isn’t set, the
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DaikonSmartPointer<T>: :DaikonSmartPointer(const void* toCopy) {
/* find the first entry greater than the key. x/
DaikonBasemap: :iterator dbi =

daikonBasemap->upper_bound (toCopy) ;

--dbi; /* scan backwards to find the last entry <= the key */
if ((dbi==daikonBasemap->end()) ||
(dbi->second.bounds < (void*)toCopy)) {
/* New entry. Base should equal index, and we should
set it up in the basemap. */

base = toCopy; index = toCopy;

dbi->second = DaikonPtrInfo
(/*base=*/toCopy, /*refcount=*/1, /*modbit=*/1);

} else {

/* toCopy falls within the bounds of an existing block.
Let’s construct off that block. Take the basemap key
as our new base, and set the index to be what wex/

base = (const T*)dbi->first;

index = toCopy;

}

DaikonPtrInfo & myinfo = dbi->second;

birthcount = myinfo.birthcount; /* copy birthcount from the basemap */
if (myinfo.from_malloc && myinfo.unformatted_block) {

/* check basemap, construct T’s in-place if necessary. We -don’t-
construct in the leeway zone, that’s done by DSA. */

for (T *iter = (T*)toCopy; iter<myinfo.bounds; iter++) {
new(iter) T();

}

/* link back to the array destructor and copier */

myinfo.dest = &(daikon_kill_type<T>);

myinfo.copy = &(daikon_copy_type<T>);

/* we’ve formatted it now. */

myinfo.unformatted_block=false;
}
myinfo.modbit=1;
I

Figure 3-5: Psuedocode for the smart pointer constructor that performs in-place construc-
tion on a block returned from DAIKON malloc ().

program aborts. It then checks to make sure that the modbit isn’t 2, because a pointer
cannot be free()d multiple times. If both the consistency checks pass, it checks the
unformatted variable. It’s possible that unformatted is still true (for instance, if the
memory block was passed to and used only by functions outside of instrumentation
scope, and therefore never constructed by any smart pointer assignment), in which
case no destructor is called. If unformatted is false, and the dest field is non-null, the
destructor is called. The destructor (see Figure 3-7) is a wrapper function that iterates

over the block, individually calling the destructors of each constructed element. If
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template <class T>

void DAIKON_free(DaikonSmartPointer<T> ptr) {

/* All this is farmed out to smartpointer.free_self(), since
we need to know the base to do this. */
ptr.free_self();

}

template <class T>
void DaikonSmartPointer<T>::free_self() {
DaikonPtrInfo &myinfo = basemapLookup() ;
if (myinfo.unformatted_block) {
/* it’s still unformatted - either it’s full of scalars, or structs
never got constructed in it. either way, you can just free(). x/
} else if (myinfo.dest) {
/* it’s been formatted somehow, and there’s a destructor for it.
call the destructor. */
(*(myinfo.dest)) ((void*)base, myinfo.bounds);
}
(myinfo.refcount)--;
myinfo.modbit = 2;
free((voidx*)base);

Figure 3-6: Psuedocode for the free() wrapper function.

the elements are smart pointers, or structs that contain smart pointers, then their
destructors are called, and the refcounts of their pointed-to memory blocks will be

decremented, maintaining consistency.

Finally, the memory is deallocated. The refcount of the block is then decremented
to account for the increment by the DAIKON_malloc() call earlier. The refcount is
not set to zero, because even though the block is invalid, there is at least one smart
pointer (the argument to DAIKON free()) that is still pointing to the block, and
the destructors for those smart pointers will eventually be called and the refcount
decremented to zero on its own. The birthcount is left alone, and is not incremented
until the next time this particular block is returned by DAIKON malloc(). The modbit
field, however, is set to 2, which is means that the data is invalid. Any output handler
that reaches this block during output to the dtrace file will see the modbit, and record

to the dtrace file that the data is uninitialized.
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/* basically, array delete for in-place constructed objects,
templatized on class. */

template <class T>

void daikon_kill_type(const void *victim, const void *top) {
for (T *iter = (T*)victim; iter<top; iter++) {

iter->"T();

}

}

/* this is called by DAIKON_memcpy(), DAIKON_bcopy(),
DAIKON_memmove(), etc. */
template <class T>
void *daikon_copy_type(DaikonSmartPointer<T> destarg,
DaikonSmartPointer<T> srcarg,
size_t n) {
/* Safe for overlapping areas of memory - copies in the right
direction, and through an intermediary. */
T intermediary;
DaikonSmartPointer<T> dest=destarg, src=srcarg;
int numelements = n / sizeof(T);
if (dest<src) {
/* copy ascending. */
for (int iter=0 ; iter < numelements; iter++)
dest[iter] = intermediary = srcl[iter];
} else {
/* copy descending. */
for (int iter=numelements-1 ; iter >= 0; iter—-)
dest[iter] = intermediary = srcl[iter];

}

return dest;

Figure 3-7: Destructor and copier functions for DAIKON malloc ()’ed memory regions.

3.6 DRT initialization

The instrumented code relies heavily on the DRT), so it is essential that the DRT is
initialized before the user code begins execution. The DRT has two global variables
that are linked into the instrumented program. The first is the basemap itself, which
is needed by every smart pointer. The second is the FILE * representing the dtrace
file, which is necessary for output at every PPT.

The dtrace file needs to be opened before the first output call is encountered.
The basemap needs to be constructed even earlier, in case there’s a pointer variable
in the global scope, which would be instrumented as a smart pointer. For safety, both

of these undergo construction before execution of the main() function even begins.
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To ensure that these objects are initialized properly, I used a design pattern from
Meyers [Mey92] for ensuring early construction of global objects.

At the end of daikon_runtime.h, which is automatically preincluded in every
instrumented file, there is a definition of an object of type Daikonlnitializer. This
object gets constructed before any smart pointer is (because it appears before any
global in program source order), and before the entry to the main() function. This
object opens the dtrace file and constructs the basemap, and when the program

terminates and it goes out of scope, it calls the destructors as well.

3.7 Struct instrumentation

All user-defined structs and classes are also output to the dtrace file, but they have
special output handlers that are generated by the dfec executable at instrumentation
time (see Figure 3-8). A “maximum instrumentation depth” is specified by the user,
and dfec does a breadth-first traversal of the IL tree branch corresponding to that
type, up to the user-specified depth. Entries for all fields touched by this traversal
are output to the decls file.

dfec also generates, for each struct type, two functions that write output to
the dtrace file for an instance of that type. The first is a static, global-namespace
function called daikon_output_user_type (), which dfec generates calls to. It checks
to make sure that the struct instance provided is initialized (i.e. has modbit 1). If the
argument is uninitialized, it outputs dummy values to the dtrace file for each field in
the struct. If the argument is initialized, daikon_output_user_type() then proceeds
to call the second function, daikon_output_thyself (). daikon_output_thyself () is
a member function of the struct type, and when called, outputs the actual contents of
its instance’s fields. Struct type output is divided into two functions for two reasons.
The first is that a global namespace function like daikon_output_user_type() may
not have access to all of a struct’s fields, if some are private, so a member function
is necessary. The second is that, if the instance is uninitialized, calling a member
function of it could have adverse effects. This is why both functions are necessary.

Each instance of daikon_output_user_type() takes five arguments: a name; a
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pointer to a structure var, an integer depth_left, and two booleans, from pointer
and is_array. var is the struct that is to be output to the dtrace file. The name
argument is simply the name of the structure, and is prepended to each field being
output (for instance, for a struct pointer named head and a field named data, the
name argument would be “head” and the function would output “head-;data” to the

dtrace file).

The from_pointer boolean variable tells the function whether the struct being
output was originally a pointer, or if its address had to be taken when calling the
function (in the example above, had from pointer been false, it would have output
“head.data” instead of “head-;data” to the dtrace file). is_array is only true when
from pointer is true, and indicates that the var argument is an array of structs, and
that the function should output arrays of the type’s fields instead of treating each as

a single occurrence.

The depth_left and modbit arguments come into play when structs have fields
that are also structs. Since daikon_output_user_type() outputs each field of the var
argument, it must generate a call to daikon_output_user_type() if one of the fields is
another struct. This could be a call to another instance of daikon_output_user_type()
if the field is of a different struct type than var, or it could be a recursive call, as
in Figure 3-8, if the field is of the same struct type. Recursive calls will show up
in circular data structures like linked lists. depth_left is decremented with each
call to daikon_output_user_type (), so that struct field traversal eventually bottoms
out at the same user-defined depth as the IL tree traversal did when the decls file
was generated. An example of a generated daikon output_user_type() function is

shown in Figure 3-8.

If a null or invalid pointer is encountered during the traversal, the DRT must
still continue outputting entries to the dtrace file, as Daikon requires that there be a
matching dtrace entry for every entry appearing in the decls file. The daikon_output_user_type()
function calls a member function of DaikonSmartPointer called invalid() to deter-
mine if it’s null, or points to an uninitialized block. Ifit is, daikon_output_user_type ()

outputs dummies for its fields, and effectively outputs dummies for its children’s fields
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by calling daikon_output_user_type() with the var argument set to null. If the
pointer is valid, however, it calls daikon_output_thyself (), which does the actual

work of outputting the fields in much the same manner.

3.8 Safeguards

During the testing of dfec, it became apparent that many C programs were unsafe,
and relied on the benevolence of the compiler and their runtime environment to
work correctly. dfec was designed to be robust when faced with certain common

programmer errors, and to alert the programmer of the bug so it can be fixed.

3.8.1 Fixed-length array overrun protection

A few programs in the Siemens suite [RH98], which we used for testing, contain
fixed-length array overrun errors [HMEOQ2]. This is one of the most common errors in
C/C++ programming, and can be hard to track down. The effect of an access beyond
the declared bounds of an array is undefined, but in practice, it doesn’t always have
an adverse effect. The schedule program, for example, contains an array that the
gcc linker places at the end of the program’s memory space. A write beyond the
bounds of the array, as long as it isn’t too far, just writes into unused slots of the
memory page allocated for the program. This doesn’t affect any other program data,
in this case.

However, when instrumented, the array is not the last thing on the page. The gcc
linker places the data structures for the DRT immediately following the schedule
data structures, so when the array is overrun, DRT data is overwritten, corrupting it
and frequently causing the program to crash. Two safeguards were implemented to
deal with this situation.

Firstly, fixed-length arrays in user code are changed to a parameterized type
called DaikonSmartArray when instrumented. DaikonSmartArray is a derived class
of DaikonSmartPointer, and does all the normal smart pointer operations such as
refcounting and keeping track of extent for invariant detection purposes. In addition,

it allocates the array at construction, keeps track of its declared length, and stores the
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Original Source | psuedo-decls file

std.foo(list *;)int:::ENTER
pointer (hashcode)
pointer->data (int)
pointer->next (hashcode)
pointer->next->data (int)

struct list { | |
| |
| |
| |
| |

struct list arr[10]; | pointer->next->next (hashcode)
| |
| |
| |
| |
| |

int data;
struct list *next;

};

pointer->next->next->data (int)
pointer->next->next->next (hashcode)
::arr (hashcode)

::arr->datal] (int array)

int foo(struct list *ptr) {

::arr->next[] (hashcode array)

static void daikon_output_user_type(string name,
DaikonSmartPointer<list> var,
int depth_left, int from_pointer,
int is_array) {
string separator =
(from_pointer 7 "->" : "_");
if ((depth_left)>0) {
if (var.invalid(/*test_contents=*/true)) {
if (is_array) {
daikon_output_dummy(name + separator + "datal[]");
daikon_output_dummy (name + separator + "next[]");
} else { /* !is_array */
daikon_output_dummy (name + separator + "data");
daikon_output_dummy (name + separator + "next");
daikon_output_user_type(name + separator + '"next",
(DaikonSmartPointer<list>)0,
depth_left-1, /xfrom_pointer=%/1,
/*is_array=x/0);
} /* is_array */
} else { /* !var.invalid */
list::daikon_output_thyself (name, var, depth_left, separator,
is_array);
} /*if (invalid)*/
} /*if (depth_left)*/
};/*daikon_output_user_type*/

void list::daikon_output_thyself (string name,
DaikonSmartPointer<list> var,
int depth_left, const char *separator,
int is_array) {
if (is_array) {
daikon_output_smartpointer_ints
(name + separator + "datal[]",
DaikonSmartPointer< int >(&(var->data)),
/*spacing=+/sizeof (1list));
daikon_output_smartpointer_pointers
(name + separator + "next[]",
DaikonSmartPointer<DaikonSmartPointer<int> >(&(var->next)),
/*spacing=+/sizeof (list));
} else { /* !is_array */
daikon_output_int(name + separator +4fHata", int(var->data));
daikon_output_pointer (name + separator + "next", var->next);
daikon_output_user_type
(name + separator + "next", (DaikonSmartPointer <list>)var->next,



length in the bounds field of the DaikonPtrInfo structure (see Figure 3-3) associated
with the address of the beginning of the array. That way, no matter what pointer is
derived from the array, the fixed length information is maintained. For smart pointers
(and smart arrays, by extension), the pointer dereference and array subscript over-
loaded operators check the basemap for this bounds field, and if the subscript (or
offset) being accessed is beyond the acceptable bounds, the instrumented program
will abort (). This doesn’t save the program, but it alerts the programmer to a bug
in the code that needs to be fixed before invariant detection can proceed. This detects
the bug at the point of error instead of manifesting later, such as an inexplicable crash
due to DRT data corruption, which would be hard (if even possible) to debug.

The second method of protection against fixed-length array overrun is a guard
structure that surrounds the DRT variables in memory. Specifically, the FILE * rep-
resenting the dtrace file (the variable that the linker puts at the low end of memory)
has an integer variable declared before and after it. At program initialization, the
integers are initialized to two “magic numbers,” and before every access to the FILE
* these two numbers are checked to make sure that they haven’t changed. If the
user program accesses data sequentially, it will corrupt these numbers before break-
ing the object. In this event, the instrumented program will also abort() with a
message that informs the user that DRT data has been corrupted. This safeguard is
useful for when a completely random pointer access destroys DRT data, or for when
a fixed-length buffer is passed to a function outside of instrumentation scope (such

as gets()).

3.8.2 Array padding

Array padding is an extension of the fixed-length array overrun protection described
in Section 3.8.1. The user can opt to add a small, user-selectable number of elements
to the beginning and end of every fixed-length array, by defining a preprocessor macro
named DAIKON_FIXED_LENGTH_ARRAY PADDING to the number of extra array elements
desired. Then, if the instrumented code writes beyond the bounds of the array in

either direction, the runtime library can simply warn the user instead of aborting, if
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the access falls within these padding zones. Since most array accesses are sequential,
the user often can get away with a few overruns, and by defining the size of the
padding zone (or “leeway”) correctly, the user can make even an incorrect program

exhibit well-defined behavior.

Array padding is implemented in two parts of the runtime library. The first part
is the allocation, which is taken care of in the constructor for DaikonSmartArray.

When the array is allocated, an extra
2 x element size * DAIKON_FIXED_LENGTH_ARRAY_PADDING (3.1)

bytes are added to the allocation. Since DaikonSmartArray is derived from Daikon-

SmartPointer, it has both a base and an index field. The base is set to point to

the bottom of the allocated block, and the index field is set to point element size *

DATKON _FIXED LENGTH_ARRAY PADDING bytes into the newly-allocated block. Since the

index field is is used to represent the “actual” pointer, there are DAIKON_FIXED_LENGTH_ARRAY_PADDING
valid elements before the user-visible beginning of the array, as well as DATKON_FIXED_LENGTH_ARRAY_PAD

valid elements beyond the user-visible end of the array.

The second part of array padding is the warnings that are issued when the in-
strumented code accesses an element in the padding area of the array. Since all
dereferences are handled by DaikonSmartPointer, the checking is done in a DaikonS-
martPointer member function called note_and dereference. note_and dereference
looks up the relevant block in the basemap, and checks its DaikonPtrInfo for the
bounds field. If bounds is set, it first checks to see if the access falls outside the
bounds, and if so, throws a fatal error. If the access is within the bounds, it then
checks the leeway field, to see if the access falls within the padding zone. If it does,
the runtime library issues an error, but proceeds with the access. max_seen is up-
dated, and a reference to the appropriate memory address is returned. Code for

note_and dereference is shown in Figure 3-9.
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T & DaikonSmartPointer<T>::note_and_dereference(int ofs) {
DaikonPtrInfo &myinfo = basemapLookup() ;
if (invalid(/*test_contents=*/false)) {
fprintf (stderr,
"daikon_runtime: program attempted to access an invalidated block!\n");
exit (DAIKON_ERR_CODE) ;
}
if (myinfo.bounds) {
/* The leeway calculations are as follows:
The range [base, bounds) is the only possible addressable range.
(leeway) bytes inwards from that is allowed, but reported. */
if (((index+ofs)>=myinfo.bounds) ||
((index+ofs)<base)) {
report_array_overflow(ofs, /*fatal=*/true);
exit (DAIKON_ERR_CODE) ;
#if DAIKON_FIXED_LENGTH_ARRAY_PADDING != O
} else if (((int) (index+ofs)>=((int) (myinfo.bounds))-myinfo.leeway) | |
((int) (index+ofs)<((int)base)+myinfo.leeway)) {
/* it’s not beyond the bounds as tested above, but it’s
in the leeway zone. */
report_array_overflow(ofs, /*fatal=*/false);
#endif /* DAIKON_FIXED_LENGTH_ARRAY_PADDING !'= 0 x/
}
}
if (index+ofs >= myinfo.max_seen)
myinfo.max_seen = index+ofs+l;
return (T&) (index[ofs]);
I

Figure 3-9: The bounds-checking routine for DaikonSmartPointer.

3.8.3 Automatic scalar initialization

The space program from the Siemens suite [RHI8] makes the assumption that scalar
values are initialized to zero when declared. This behavior is not part of the ANSI C
standard, though some compilers (notably gcc) do this anyway. However, the version
of g++ that dfec is compatible with does not. When instrumenting a C program
that assumes gcc is going to initialize its variables to zero, the compilation of the
instrumented source produces a version of the program where undefined behavior
manifests itself as a bug.

Though this is an error on the user’s part, the user will rationally attribute any
change in behavior in the instrumented program to a fault in dfec. Currently, dfec
outputs an zero initializer for every scalar variable that the user has left uninitial-

ized. This allows the space program, as well as other programs that make the same
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assumption, to work correctly.

3.9 Other Features
3.9.1 Disambiguation

The C language allows a programmer to use a pointer variable as either a simple
reference to one variable, or as a base pointer to a sequential array of variables of
the same type, as demonstrated in Figure 3-10. The runtime library can generally
determine what memory is valid, and usually pointers to single variables are simply
output as arrays of length 1. However, this is not always good enough. If the user has
a pointer to a single int variable, and uses the pointer to address an int field inside
a larger struct with other fields (which may not necessarily be ints), the runtime will
incorrectly output the subsequent bytes in the struct as if they were members of an
int array. Also, there must be a decision made at instrumentation time whether a
struct pointer is an array or a pointer to a single struct. If it is instrumented a pointer
to a single struct, then fields of other structs in the array will not be output. However,
if it is a single struct but instrumented as an array, recursive instrumentation will be
shallower than in the single case - array fields of the struct cannot be output, since the
struct is already an array, and Daikon proper cannot handle two-dimensional arrays.
Clearly, a mechanism to allow the user to select whether to instrument a pointer as
a pointer-to-single or as an array is necessary.

While static analysis could guess as to what the programmer intended, this is
beyond the scope of this thesis, and is not implemented. However, dfec provides a
mechanism by which the user can specify, for a specific variable at a specific program
point, how that variable should be output. This feature is called “disambiguation.”
Disambiguation is controlled by a separate file that is loaded at instrumentation time,
containing a list that specifies the representation types of dereferenced pointer vari-
ables. This way, a static analysis utility could be written later to use this mechanism,
but remain over-ridable by the programmer.

In Figure 3-10, many_characters refers to an array while single_character refers
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char single_character;
char many_characters[100];

char *pointer;

pointer = &single_character;
pointer = many_characters;

Figure 3-10: The versatility of pointer variable types.

to a single value. Information about whether each pointer refers to an array or a
single element can be specified in a “disambig file” that resides in the same directory
as the decls file. dfec has a command-line option that causes it to read this file
instead of assuming all pointer variables should be instrumented as their default
types. (dfec can also produce the file automatically, permitting users to edit it for

use on subsequent runs, rather than having to create it from scratch.)

The disambig file lists all the instrumented PPTs, and under each, a list of all the
variables in scope at that PPT, along with the types that the variables are instru-
mented as. For pointer variables, there are two options: “A” for array, and “P” for
pointer to single value. For variables of type char, there are two options: “I” for inte-
ger (i.e. numerical value), “C” for character. This allows the user to choose whether
a char variable refers to a short numerical value that mathematical invariants should
be calculated over, or an ASCII character. An example is shown in Figure 3-11, where
the desired type of array is “A” (an array of values), and the desired type of result

is “P” (a pointer to a single value).

The disambig file contains a single entry for the global variables, another entry for
the parameter variables at each PPT, and another entry for every user-defined class or
struct in instrumentation scope. Members of structs or classes can be disambiguated
just like variables at a program point. Entries can occur in the disambig file in any
order, and variables can be omitted, which will lead to them being instrumented as

their default type.
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/* ideal disambig file: */
std.peq(int *;int *;)int:::ENTER

/* example program: */

int foo[10] = pl
{1, 1, 2, 3, 5, 8, 13, 21, 34, 55}; P
p2

int peq(int *pl, int *p2) { P

return (*pl == xp2);

} std.peq(int *;int *;)int:::EXIT
pl
int main() { P
int 1i; P2
for (i=0; i<9; i++) P

peq(foo+i, foo+i+1);

//Invariants discovered, using disambiguation

std.peq(int *;int *;):::ENTER
*pl <= *p2

std.peq(int *;int *;):::EXIT1
pl == orig(pl)

*pl == orig(xpl)

p2 == orig(p2)

xp2 == orig(x*p2)

return one of { 0, 1 }

*pl <= *p2

//Invariants discovered, without using disambiguation

std.peq(int *;int *;):::ENTER
size(p1[1)-1 == size(p2[])
pl[] elements >= 1

pl[] sorted by <=

p2[] sorted by <

plll < p2[1 (lexically)

p2[] is a subsequence of pil[]
pll] >= ::foo[]l (lexically)
p2[] > ::fool]l (lexically)

std.peq(int *;int *;):::EXIT1
pl == orig(pl)
pl[l == orig(pil[])
p2 == orig(p2)
p2[] == orig(p2[1)
size(p1[1)-1 == size(p2[])
pl[] elements >= 1
pl[] sorted by <=
p2[] sorted by <
return one of { 0, 1 }
pil]l < p2[] (lexically)
p2[] is a subsequence of pil[]
pll]l >= ::fool[] (lexically)
p2[]1 > ::fooll (lexically)
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3.9.2 Variable Comparability

Variable comparability information can speed up the invariant detection process and
reduce the number of trivial invariants by eliminating comparisons between unrelated
variables. For instance, if two variables have the same type, but are never actually
compared (directly or indirectly) in the target program, it can be assumed that any
invariants discovered involving both variables are purely coincidental (see Figure 3-
12). dfec can, after instrumentation, call an external program called Lackwit [0J97],
which performs static analysis on C code to determine what variables are comparable.
A combination of Perl scripts and another preparatory front end that aids Lackwit
in its analysis of array variables are used, and the comparability types are inserted
into the decls file in the correct places. This process is described in Section 3.9.2.
No variable comparability detection is implemented or planned for C++.

Figure 3-12 is a demonstration of the need for comparability types. Without
comparability types, Daikon would attempt to calculate invariants relating index
and weight, because they’re both ints. However, since one is an index and one is a
numerical value, their comparability types will be different, and no invariants will be
calculated relating their values. However, weight will be compared to the elements

of the bar array.

Lackwit execution

Lackwit, as distributed, contains a few bugs and is missing a few necessary features
for it to be transparently usable as a variable comparability detector. Michael Harder
has written an lwpp Perl script that makes the use of Lackwit transparent for the
user, and I've written a separate extension of the EDG front end called 1h that inserts
information into a source file to allow Lackwit to better detect variable comparability.

Lackwit comes with a file called 1ibc.c, which contains signatures for functions
in libc, and fake stub implementations for them that causes Lackwit to associate
their arguments in the correct manner. Every execution of dfec causes this file
to be processed by Lackwit, which notes every time a variable is comparable to

another (by an assignment, boolean relation, or other expression that involves the

47



int bar[] = {1,1,2,3,5,8};

int foo(int index, int weight) {
return bar[index] + weight;

}

Invariants detected, using Lackwit

std.foo(int;int;):::EXIT1

index == orig(index)
weight == orig(weight)
::bar == orig(::bar)
index >= 0

weight >= 0

::bar has only one value

::bar[] elements one of { 1, 2, 3, 5, 8 }

weight < return

Invariants detected, without using Lackwit

std.foo(int;int;):::EXIT1

index == orig(index)
weight == orig(weight)
::bar == orig(::bar)
index >= 0

weight >= 0
::bar has only one value

::bar[] elements one of { 1, 2, 3, 5, 8 }

::bar[index..] >= (index)
::bar[index..] sorted by <=

::bar[0..index-1] elements one of { 1, 2, 3, 5 }

::bar[weight..] >= (index)
::bar[weight..] sorted by <=
::bar[weight+1..] > (index)
::bar[weight+1..] sorted by <

::bar[0..weight-1] elements one of { 1, 2, 3, 5}

index <= return

index <= size(::bar[])-1
weight < return

weight <= size(::bar[])-1
return >= ::bar[index]

Figure 3-12: A demonstration of the necessity of comparability types.
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/* original version */
void foo(int *array,
int index,
int value) {
array[index] = value;

}

/* version processed by 1lh */
void foo(int array_index, int array_element, int *array,
int index,
int value) {
((array_index=index,
array_element=array[array_index],
array[array_index])) = value;

}

Figure 3-13: The changes made by 1h to a sample function.

two variables directly), and adds this information to a database that can later be

queried to determine equivalence classes of variable comparability.

For each source file being instrumented by dfec, a copy is set aside and processed
by other utilities before being input to Lackwit. First it is processed by 1h, which
takes in C source and outputs a modified version of the source. Lackwit alone does
not calculate the correct comparability of array indices over function-call boundaries,
so 1h manually adds arguments to function calls for these indices, as demonstrated in
Figure 3-13. Every array subscript operation is rewritten in a manner that the index
is associated with a new local variable that 1h adds, called arrayname_index for an
array variable named arrayname. A similar rewriting is done for array elements,
using a new variable called arrayname_element. This adds information that allows

Lackwit to connect comparability classes over function-call boundaries.

Once all the source files have been handed to Lackwit and the comparability
database has been built, the decls file is rewritten by the lwpp script that iteratively
queries the Lackwit database for comparability identifiers of each variable. Because
of bugs in the Lackwit executable, the transitivity of variable comparability is not
always maintained, and the script performs additional unification of comparability
classes. Another bug causes the Lackwit executable to crash if a field of a structure

is queried when it hasn’t been explicitly referenced in the source. lwpp catches these
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crashes, and calculates comparability of struct fields by referencing the comparability

classes of its parent.
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Chapter 4

Experience

The two major requirements of the dfec system are that it does not affect the behavior
of the instrumented program, and that it outputs as much quality data as possible

to the dtrace file so that Daikon proper has can discover quality invariants.

A test suite has been developed that consists of six programs from the Siemens
suite [RH98|, along with the reference implementations of the MD5 cryptographic
hash [Plu99] and Rijndael [RDO1] algorithms. The Siemens programs are each ac-
companied with quite large test suites that fully exercise program behavior, and the
Rijndael implementation is accompanied by an fairly exhaustive test stub. Correct
program behavior is checked by comparing the output of the instrumented version
with the uninstrumented one. Output behavior is harder to check. A regression test
suite has been constructed that contains versions of dtrace and decls files that are
known to exhibit quality invariants in the Siemens suite. The quality of these invari-
ants is known, because they are expressions in the grammar of Daikon that have been
proved, in other papers about the same suite. A dtrace-diff tool exists to compare
two dtrace files and enumerate any differences between them, so it’s easy to tell if
a change in dfec yields a positive change in the dtrace file (such as suppression of
the output of uninitialized variables) or a negative one (such as the failure to output
structs). An invariant diff tool also exists, written by Michael Harder, which can
show how the changes in the dtrace or decls files add or remove from the potential
invariants that Daikon proper can detect. The invariant diff tool is used mostly to

detect errors or changes in Daikon proper, and is outside the scope of this thesis.
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4.1 Tools
4.1.1 dtrace-diff

For regression testing purposes, it is important to compare the output dtrace file
produced by one run of an instrumented program to an earlier, ’ideal” version. The
dtrace-diff tool is a Perl script written for this purpose. It is useful because it
can catch bugs in the output procedures, or if a revision of the DRT is buggy and
causes the instrumented program’s behavior to differ from that of the uninstrumented
version, it will catch that by noting a difference in expected PPTs. It is analogous to
the UNIX diff utility, in that it compares two files and outputs lines where they differ.
Unlike diff, however, it takes the semantics of the dtrace file into consideration. It
takes an extra argument of a decls file, so it knows the types of the variables being
compared. This is useful because some textual differences in the dtrace file may not

indicate an actual semantic difference that should be worried about.

Floating-point variables can be compared to within a tolerance, so that they’ll
be considered to be equivalent if they’re within a configurable € of each other. This
is useful for comparing the operations of an instrumented program on two different
platforms, such as Linux and Solaris, where the floating-point hardware or library

implementation may give slightly different results.

Pointer variables are recorded to the dtrace file as type “hashcode”, analogous to
Java where each object instance has its own unique hashcode that can be effectively
implemented by just using its address in memory. These hashcodes are output to the
dtrace file, but Daikon knows not to calculate mathematical invariants over them,
since their values are non-deterministic and are tied to the memory layout of the
system at the time of execution. Similarly, dtrace-diff knows that if two runs of a
program have different values for a hashcode-type variable, it doesn’t necessarily mean
that there’s a semantic difference in the two executions of the program. The exception
to this is that null pointers are always the same value (namely, 0) on all executions
of the program. dtrace-diff only outputs a difference on hashcode variables if one

instance is null and the other is not.
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4.2 Modifications to the test suites

The programs that were used as a test suite for dfec were occasionally uninstru-
mentable in their given form, due to size, faults, or dialect of C used. Below is a

report, of the modifications that were done to get them to work with dfec.

4.2.1 Siemens

The Siemens suite [RH98] is a suite of programs used frequently in the testing and
program analysis field. They are written in the K&R dialect of C, and to instrument
them, they first had to be passed through protoize [Gui]. Under instrumentation,
some previously undetected faults were uncovered.

Array-overrun bugs were found in three of the Siemens programs (print_tokens2,
replace, and tcas). These errors had not been noticed in previous research using
the programs. When the coverage test suites were originally created, the erroneous
programs had read or written an element beyond the bounds of an array without
inducing a fault. However, in our environment, the array bounds errors caused the
programs to crash, by corrupting the DRT’s data structures and triggered an assertion
failure. This was the motivation for adding the runtime checks for such memory errors
to the DRT as described in Section 3.8.1. The implementation of the array padding
feature (see Section 3.8.2) with the default setting of 2 padding elements allowed
print_tokens2 and tcas to execute without generating a fatal error. However, the
replace program would require dozens of elements to operate correctly, so it still
generates a fatal error. It is useful to have at least one program generating a fatal error
in the test suite, solely to ensure that the runtime library’s error-handling mechanism
is operating correctly.

In addition to requiring protoization, the type system of some of the Siemens
programs was slightly convoluted, and required some changes. For example, in
print_tokens2, the two types character_stream and token stream were occasion-
ally used interchangeably. Both are typedef aliases of FILE * and are compatible,

but print_tokens?2 failed to include forward declarations for its functions. dfec
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failed to match the implicit definition of unget_error(token_stream) with the later
explicit definition of unget_error(character_stream). In ANSI C, this would have
only generated a warning, because token_stream and character_stream are both
pointer types. In the instrumented code, however, they are both smart pointers,
which are template classes. The compiler has no way of knowing that they’re com-
patible, and therefore gives an error. The function signature was changed to be

consistently unget_error (token_stream) and it compiled and executed fine.

4.2.2 Rijndael

The Rijndael reference implementation [RD01] contains the algorithm and an exten-
sive test stub. The test stub is designed for gathering timing data, so it runs an
exceptionally large amount of code. In fact, it runs so much that the instrumented
program (on Linux) eventually terminates abnormally, because the generated dtrace
file exceeds the two gigabyte filesize limit on the ext2 filesystem. Because of this,
we had to reduce the number of iterations of some top-level loops to get a test that
would run in a reasonable amount of time, and produce a reasonably-size dtrace file

for invariant detection.
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Chapter 5

Future Work

dfec is a working system, and can handle non-buggy programs in a subset of the
ANSI dialect of C. However, for usability purposes, this still leaves something to be
desired. Non-buggy programs are extremely rare, and users may want to use dfec and
Daikon specifically to find bugs in their programs. There is much room for usability

work to be done, as well as increasing the subset of ANSI C that dfec can handle.

5.1 Additional 1libc instrumentation

Currently, only the string.h functions, memcpy (), memmove (), bcopy (), getopt (),
malloc(), and free() have had wrappers written for them. There are other functions
in 1ibc that take pointer arguments, or return pointers, that should have wrapper
functions written for them that understand the semantics of the function, and what

effect it has on the heap.

5.2 gcc emulation

gcc has a few non-ANSI constructs in its header files, which occasionally require
workarounds. Currently, dfec attempts to deal with these by defining system macros
that make it act like an older version of gcc during the preprocessing step. This is
not an elegant solution, and it may result in incorrect operation if function signa-
tures in older areas of system header files don’t match with new ones. Making dfec

behave more like gcc would help streamline the instrumentation process. As EDG
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has just recently released a new version of their front end with better support for gcc

emulation, moving dfec to be based on the newer version of EDG could help.

5.3 Unhandled C syntax

Because of the code that dfec inserts during instrumentation, sometimes the instru-
mented code is uncompilable. This is relatively rare, but there are a few cases where
valid C is instrumented to become invalid C++. One example of this was given in
Section 4.2.1, where two pointer types that should be compatible turn incompatible
under instrumentation, because gcc does not follow the same type-compatibility rules

for template objects as it does for pointer types.

5.4 Thread safety

The current implementation of the runtime library is not thread-safe, and consequen-
tially, instrumentation of any threaded program will fail. To make the runtime library
thread-safe, all accesses to the basemap will need to grab a mutex. This would avoid
corrupting the STL map by calling mutation operations in parallel. Also, all Daikon-
SmartPointer operators assume that their associated DaikonPtrInfo will not change
between the beginning and end of the function. A per-block mutex might work here,
or possibly just reuse of the basemap mutex, so that only one DaikonSmartPointer
could be executing an operator at a time.

Additionally, accesses to the dtrace file will need to be serialized, so that the
output from two PPTs does not interleave. A simple mutex that must be grabbed

before outputting a PPT, and is released afterward, should do the trick.

5.5 Same-sized smart pointers

Ideally, to minimize the possibility of error, and to maximize interoperability with
uninstrumented code, it is desirable to make the smart pointer as much as possible
like the primitive pointer it replaces. The current implementation of a smart pointer

is an object which is a different size than a primitive pointer. This changes the
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memory layout of instrumented data structures. The instrumented code is adjusted
accordingly, and should deal with the data structures transparently to the user, but

uninstrumented code does not.

Currently, the index field of DaikonSmartPointer is placed at offset 0 in the
memory layout of the object, so that uninstrumented code that thinks the object
is a primitive pointer will overwrite this field. Since the index field represents the
equivalent primitive pointer, this is more or less the desired behavior. However, when
an array of pointers is instrumented, the size of the DaikonSmartPointer changes
everything. Uninstrumented code iterating over the block of pointers will first get the
index field of the first DaikonSmartPointer, then its base field, then its birthcount
cast to a pointer, then the index of the second DaikonSmartPointer, and so on
(See Figure 5-1). Clearly, this is incorrect behavior and will most likely cause the
program to crash (when the uninstrumented code dereferences the birthcount, which

is probably a low number, and therefore out of bounds).

A solution to this is to have the smart pointer object be the same size as the
primitive pointer it replaces. The base and birthcount would be removed from
the smart pointer, and put into another STL hashmap, separate from the basemap.
Where the basemap maps from base pointers to attributes of a memory region,
this new map would map uniquely from the address of a smart pointer variable in
memory to a small structure holding its birthcount and its associated base pointer.
On construction or assignment of a smart pointer, instead of copying the base and
birthcount directly from the source smart pointer, the constructor function would
make a new entry in the new map for the target smart pointer, and copy the base
and birthcount fields from the source’s entry in the new map. A diagram of this is

shown in Figure 5-2.

This design would slow the instrumented executable down, but it would be much
more safe. Additional safety features could be implemented, such as caching the last
known value of the smart pointer in the new map, so if the pointer was changed by
uninstrumented code, the runtime library could tell that it had been changed, and

look to see if pointed to a different known block or was pointing to an unknown block
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DaikonSmartPointer<char>[3] char *[3]

[0] index
base
birthcount
[1]  index
base
birthcount
[2]  index
base
birthcount

A string
A string

Al sl fefifoo ol [0]
E [
alnfoltfnfefr [ [s]efelifnlo]ol
0 1 [2]
~lalnlal fafnfoft[n]e]r |0
7\
0 o :
void uninistrumented function(char **arg) {
printf("%s\n", arg[0]);
printf("%s\n", arg[1]);
printf("%s\n", arg[2]);
0 }
Output of uninstrumented _function: Output of uninstrumented _function:
A string
Anot her string
And anot her

(null)

Figure 5-1: Size inconsistencies between primitive pointers and DaikonSmartPointer.

now.

5.6 Safety and debugging features

While dfec is not intended to be primarily used as a debugging tool, some features
found in the tools discussed in Chapter 6 would be welcome additions to the runtime
library. Saving a snapshot of the call stack and associating it with a malloc()ed
block, like Valgrind [Sew], could help users track down a bug involving the block if
it was found to impair program execution. Another Valgrind feature, which checks
to make sure the program under analysis is using the deallocator (free(), delete,
or delete||) that correctly matches the allocator (malloc(), new, or new||) used to
obtain the given block. Finally, disclosing memory leaks at the end of the program,
while it would neither aid invariant detection or help a faulty program execute, could

possibly be of interest to users who are using the Daikon system primarily to fix bugs
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User memory daikonPointermap DaikonPtrinfo
| 0x8001234) base | 0x8004321,
Address | Data o 0800
L _________ ! X . |
( | birthcount | O |
'~ ~0x8001234! | 0x8004321 ‘ ‘ ! !
0x8004321' '
0x8004322 't | deikonB
0x8004323 "1 ! akonbasemap
0x8004324: "7’ l 0x8004321] 0x8004328
0X8004325, 1V b > Max_seen
0x8004326, g 0x800...
0x8004327 "\0' X refcount 1
> 0x8004328 ... | ‘ ‘
| | | modbit | 1
1 0x000000
| bounds |
! birthcount 0
Figure 5-2: Proposed implementation of a slimmer smart pointer.

in their programs.
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Chapter 6

Related work

dfec’s runtime library has much in common with testing tools such as Purify [HJ92],
debug_malloc [Cah90], and Valgrind [Sew]. However, the aim of dfec is often opposed
to the aim of these testing tools: while all monitor memory state in order to catch
errors, dfec would like to allow the running program to execute as long as safely
possible, even if it behaves illegally, while testing tools want to aggressively find and

report errors and stop the program, even if the error would not normally be fatal.

6.1 Purify

Purify is a software testing and quality assurance tool that detects memory leaks
and access errors [HJ92]. Its primary focus is to help the programmer discover and
fix run-time detectable errors such as memory leaks (malloc()s without matching
free()s), reads from uninitialized memory, and writes to free()d memory.

Purify is invoked on an executable file, modifying the object code in memory
instead of modifying the source code. It inserts a function call before and after every
data memory access instruction. At runtime, it keeps a state table that holds two
status bits for every byte of memory in the heap, stack, and statically allocated data
sections. One bit encodes whether a byte is writable or not (i.e. whether it’s been
allocated on the stack or malloc () ed and not yet free()d), and the other bit encodes
whether the byte is readable or not (i.e. whether it has been initialized by a write).
It also pads the beginning and end of malloc()ed blocks with a few bytes, but in

contrast to dfec, it marks them as unreadable and unwritable, so if the program under
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analysis attempts to access them, it will report an error. dfec’s padding reports the
error as well, but the intent is to allow the program to continue execution predictably

and stably.

Also, Purify "holds’ memory blocks for a period of time after they’ve been free()d,
in an attempt to minimize the chance that a block will be free()d, re-malloc()ed,
and then accessed with a stale pointer. If this were to happen, this would be a
memory error that Purify is unable to detect. dfec can detect this error, however,
as the birthcount for the smart pointer and the birthcount for the memory block

would not match.

Another error that Purify does not catch is when two array variables are adjacent
in memory, and one overflows into the other. Purify attempts to minimize occurrence
of this error by inserting unallocated bytes after variables as described above. Since
most array accesses are sequential, this technique will most likely report an overflow
before the program begins writing into the next array. However, if the program jumps
far beyond the end of the array and writes into the next one without touching the
unallocated region, Purify will not catch the error. dfec will catch it, because the base
pointer for the array is associated with a DaikonPtrInfo that specifies the bounds.

Any access beyond the bounds is caught.

In summary, dfec is able to catch certain errors that Purify is unable to due
to their fundamentally different approaches in tracking memory state. Purify uses
a byte-based approach, where each byte is associated with status bits that simply
indicate the memory location’s validity. The positive aspect of this is that the book-
keeping overhead of a memory access is a small constant (an array lookup, a test,
and a write), whereas for dfec, the correct DaikonPtrInfo must be looked up, which
is O(logn) in the current implementation. Additionally, it has finer granularity in
determining validity. If a block is newly allocated, and then has a write performed
on it several bytes in, Purify only reports the written byte as valid, where dfec will
assume that all bytes from the beginning of the block up to the written byte are valid.
Indeed, dfec performs construction and default initialization of array elements and

elements of malloc()ed blocks as soon as possible, to avoid accidentally outputting
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garbage data. However, the memory overhead of Purify is a constant 25% of the user-
addressible memory, whereas dfec’s memory usage can be much smaller, depending
on the size of the allocated blocks. For a program that only has one pointer vari-
able, that points to a malloc()ed block of four megabytes size, Purify uses an entire
extra megabyte to store status bits, whereas dfec only uses a single DaikonPtrInfo
structure, about 34 bytes (depending on architecture and compiler-generated padding
for alignment purposes). Purify also catches errors that dfec does not, in specific,
memory leaks. Memory leaks are of no interest to dfec. They could be easily caught
by the runtime library by checking, during the destruction of the basemap, if there
exist any DaikonPtrInfo structures for blocks marked as from_malloc that still have
a modbit of 1, and complain. However, since a program will still run correctly and

generate valid data even with a memory leak, dfec does nothing about it.

6.2 Valgrind

Valgrind [Sew] is a system that, like Purify, attempts to discover memory access er-
rors. It operates in a similar fashion to Purify, and (like Purify) catches uses of unini-
tialized memory, accesses to memory that has been free()d, boundary violations
on malloc()ed blocks, and memory leaks. Additionally, Valgrind catches reads and
writes to inappropriate areas on the stack, and mismatched uses of malloc() /new/new||
versus free() /delete/delete]].

Valgrind, like Purify, has two bits per memory location - an A bit to indicate
a valid address (i.e. if the address has been allocated), and a V bit to indicate
valid data (i.e. if the address has been initialized). In contrast to Purify, Valgrind’s
validity-tracking operates at bit granularity, keeping status bits for every bit of user
memory, and for every register in the processor. The A-bits (tracking address validity)
are, as in Purify, per-byte. This leads to a program with a four-megabyte memory
footprint (like the one described in Section 6.1) requiring an additional four-and-a-
half-megabyte memory state table.

Valgrind’s ability to detect incorrect accesses of the stack frame cannot be repli-

cated by dfec. Mismatched uses of malloc () /new/new[| versus free() /delete/delete]]
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could be detected by dfec, by adding status bits to DaikonPtrInfo that indicate how
exactly the block was allocated. However, since dfec’s goal is to continue even in
the face of programmer error, it does not perform these checks. Confusing malloc()
for new and free() for delete is fatal, however. Array constructors and destructors
are manually called by the runtime library on malloc()ed blocks, and these array
constructors cannot be guaranteed to be compatible with new|[| and delete[], which

have compiler-specific implementations.

6.3 debug malloc

debug_malloc [Cah90] is a library consisting of replacements for the standard system
malloc(), free(), and related calls. No code change is required to use it, but the
executable must be linked with the debug_malloc library. It works by providing
hostile conditions for programs that will cause the program to segfault on certain
memory errors when it might have continued unaware under normal conditions. The
malloc() replacement fills the returned memory area with the value 0x01, which
will break programs that expect memory areas to be initialized to zero, as well as
programs which free() an area and expect it to be returned unchanged on the next
malloc(). The malloc() replacement also allocates a certain amount of padding
that it fills with “magic numbers”, which it then uses when it performs consistency
checks during free(), ensuring that these numbers have not been changed (which
would indicate that the program wrote beyond the bounds of the block). The free()
replacement also fills the block with the value 0x02, which will break programs that
free() memory regions and then continue to reference them.

debug_malloc is extremely lightweight compared to dfec, Valgrind, and Purify. It
requires very little additional state information, and therefore has a small footprint.
Also, it doesn’t check every access, instead only performing sanity checks during
malloc() and free(). In exchange for the low overhead, some errors are missed.
For example, it only catches out-of-bounds errors when the program actually writes
out-of-bounds, whereas dfec can catch a read. The goal of debug_malloc is opposite

to the goal of dfec, in that debug_malloc tries to make it hard for a buggy program
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to execute, and dfec tries to make it easier for even buggy programs to execute in

the most “correct” fashion they can.

6.4 Run-Time Type Checking

The run-time type checking system devised by Loginov, Yong, Horwitz, and Reps [LYHRO01]
is more similar to dfec than the other testing tools described in that it performs in-
strumentation on the source code. Like the other testing tools, however, it maintains
status bits for each byte of memory, instead of on a per-block basis, like with dfec.
The status bits are used to represent what type the byte contains (one of “unallo-
cated,” “uninitialized,” “integral,” “real,” and “pointer”). The “unallocated” and
“uninitialized” tags work exactly the same way as they do in Purify, allowing the
system to detect the set of memory-access errors that Purify does. The system’s pri-
mary focus, however, is to detect and report run-time type conflicts. An example of
a type conflict is when a union variable is written as an integral type, then is read as
a pointer type. Statically, there is no feasible way to check that code is free from this
type of error, but at runtime, the system notes that the union has been initialized to
an integral type, and then issues a warning when it is read as a conflicting type.
dfec performs a nominal amount of runtime type-tracking, using the dest and
copy function pointers in DaikonPtrInfo. Of course, this type-tracking is on a per-
block basis, whereas the run-time type checking system is per-byte. Per-byte track-
ing allows for more complicated memory layouts (like non-homogeneous arrays for
user-implemented allocators, or arrays of structs with differently typed fields) to be
correctly tracked. However, dfec’s interest in types is only so it can call constructors,
destructors, and copy functions, and per-block tracking is sufficient for this. Some
run-time type errors could be detected - for instance, using memcpy () to copy a region
of type A into a region of type B. However, since dfec wants to be as transparent
as possible to the user, in this case it simply updates the destination region’s dest
and copy function pointers with those of the source region, instead of issuing an error

about the difference.
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Chapter 7

Conclusion

This thesis has shown the design, implementation, and effectiveness of a C/C++ front
end for the Daikon system, consisting of a source-to-source transformation utility and
a runtime library to be linked into the instrumented source.

Testing, use, and the gradual evolution of the system has shown that augmenting
C code while maintaining coherency (i.e., without disrupting the original semantics
of the program) is extremely hard to do. C is a very low-level language, and allows
the programmer to perform operations (like reinterpret casts) that can break any
additional code linked into the system. Additionally, the C language does not provide
protection against array overruns or other out of bounds accesses like Java does.

In spite of this, safeguards can be implemented that dynamically enforce safety.
Adding in bounds-checking to a program not only alerts the user to a potential
problem, but could actually increase the safety of the program, once fixed-length
array padding is implemented — corner cases that used to have undefined behavior
will now be well-defined, and won’t have a possibility of crashing the program, where
the original uninstrumented source may have crashed.

User feedback suggests, however, that any behavior that diverges from the behav-
ior of the uninstrumented source is unacceptable, whether it informs the user about
properties of the code in question or not. dfec is part of a system used to detect
invariants, and is not a buffer overrun detector. Unfortunately, this puts dfec in the
position of attempting to emulate undefined behavior, but progress can be made by

carefully choosing the behavior that is the most tolerant of the running program.
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Uninstrumented functions from 1ibc pose a unique challenge in that they cannot
be rewritten by the instrumenter. However, they are well-defined semantically, and
can be assumed to be well-behaved, to a greater degree than user code can be. Ad-
ditional information can be gleaned from the semantics of these functions, which can
aid dfec in the discovery of more valid user data.

In summary, implementing a front end for Daikon consists of an inherent tradeoff
between collecting as much data as possible from the running program, while ensur-
ing (most importantly) that the program behavior is never changed. By playing it
safe, keeping track of boundaries, and enhancing the picture by taking advantage of
knowledge we have about the behavior of external functions, we can collect as much

data as possible to export to Daikon proper for detection of quality invariants.
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